
Flow data storage and retrieval
utilizing big data aproach

CESNET, INVEA-TECH, MU

Motivation

• Network flow monitoring generates large
amount of data – 250 GB per day

• Interactive work with data is an issue

Intro

• There are several open-source platforms
enabling big data processing
• Hadoop, (native, Hive, Pig, nfdist) – MapReduce
• ElasticSearch
• Vertica
• Proprietary implementation

Queries

• Query 1: Total number of flows, packets, bytes
• Query 2: Number of flows with port 53 and

proto TCP
• Query 3: Print flows with destination port 53.
• Query 4: Print IP adresses sorted by bytes with

flows, packets and bytes

Data

• One 10Gbps line
• 24 hours
• 877 million of flow records
• Records simplified to NetFlow v5 equivalent
• CSV as well as binary data representation

Hadoop cluster

• 24 slave + 3 master nodes
• Intel Xeon CPU E5-2630 v3 @ 2.40GHz
• 128 GB RAM each node
• Total disk capacity: 1 PB

Hadoop, Hive, Pig

• Hadoop configuration can be customized, e.g.
replication factor, heartbeat

• Queries in Hadoop are written in Java as
MapReduce operations, text and binary format

• Hive is an SQL interface into Hadoop, data are
uploaded into Hive representation

• Pig is a functional interface into Hadoop, data
are stored in CSV format

Results

Results

Results: Hive parallel

Hadoop summary

• No significant differences between native
Hadoop query implementation and Hive

• Pig is worse and fails arbitrarily
• Hadoop utilize heartbeat messages not

only to liveness detection but also to
distribute jobs and collect results – this
cause long latencies before retrieving first
data (around 20s)

Hadoop summary

• Java and long latency means low
performance/effectivity per single node
• Query over 877. mil records – performance

lower than 1 mil. records/s per node
• Query over 8 billion records – performance

lower than 2 mil. records/s per node
• nfdump on single node reaches 4+ mil.

records/s per node
• Parallel queries improve single node perf.

Hadoop results

• Data upload (877 mil. toků)

nfdist

• Tool utilizing hdfs as a storage
• NfDump files are upload to hdfs
• Distributed nfdumps retrives data from

hdfs and results are merged by nfcat tool

NfDist summary

• Outdated with limitations
• Old nfdump format
• Limited by HDFS block size
• Performance per single node simillar to

Hadoop

ElasticSearch

• 9+1 nodes
• Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
• Each node 8GB RAM

Results ElasticSearch

• Queries over whole data set
• Query 2 – 1x 30s, 3x10s
• Query 3 – 1-2s
• Query 4 – 5200s

ElasticSearch summary

• Extremely slow upload due to indexing
• 877 mil. toků in 9hours without replication
• 46 hours with replication

• Large index
• Index is 4 times larger than data

• Fast response to filtration queries
• Around 1s

• Limited by RAM

Vertica

• 3 nodes
• CPU: 2 cores z Intel E5-2670 @ 2600 MHz
• Each node 4 GB RAM

http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI

Vertica

Vertica

Vertica summary

• Vertica is a column based DB
• Allows to read only necessary fields from the

record
• Exploit thread paralellism
• Deals with realibility
• Publicly available up to 3 nodes

Proprietary implementation

Proxy node

Master node

Control
channel

Slave Slave Slave

Storage layer

Query layer

Results

Summary

• Proprietary implementation achieves high
performance per single node in both tasks
storage and queries.

• Does not support high-availability features
and multi-thread support so far

Conclusion

• Publicly available platforms exhibit certain
limitations

• Flow collector deals with specific data and
queries as such proprietary solution will
always offer better parameters

• SecurityCloud project implements open
source „big data“ flow collector which will
be available 2015

Acknowledgement

• This work is partially supported by
Technological Agency of Czech Republic

