Distributed Anomaly Detection with Network Flow Data

Detecting Network-wide Anomalies

Carlos García C.¹ Andreas Vöst² Jochen Kögel ²

¹TU Darmstadt Telecooperation Group & CASED

²IsarNet SWS GmbH

2015-07-24

Table of Contents

- Securing Complex Networks
- 2 Discovering Anomalies in Flows
- Scalable Distributed System
- Exemplary Results

Table of Contents

- Discovering Anomalies in Flows
- 3 Scalable Distributed System
- 4 Exemplary Results

5 Summary

• Computer networks are crucial to daily life

- banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

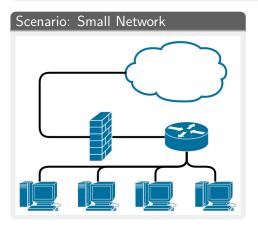
- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

- Computer networks are crucial to daily life
 banking systems, power plants, your office
- Attacks are more sophisticated and widespread
- How do we protect networks?
- Proactive security is not sufficient (e.g. firewalls)

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	
The Scenario			

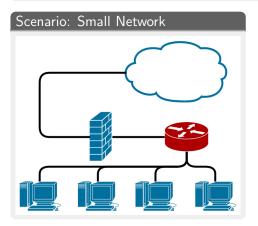
- Security cannot be guaranteed
- Detect security and policy violations after their occurence

Scenario: Small Network

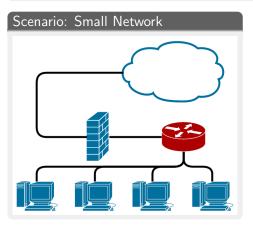

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	
The Scenario			

- Security cannot be guaranteed
- Detect security and policy violations after their occurence

Scenario: Small Network

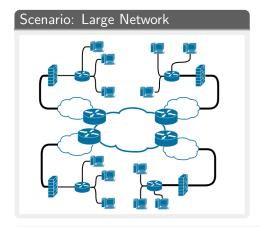


- Security cannot be guaranteed
- Detect security and policy violations after their occurence



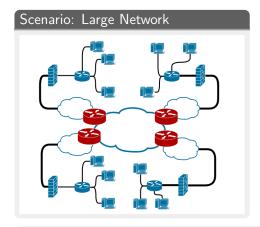
- Security cannot be guaranteed
- Detect security and policy violations after their occurence

- Security cannot be guaranteed
- Detect security and policy violations after their occurence

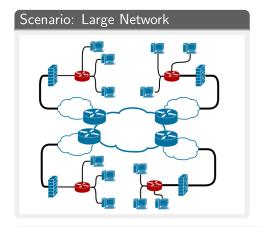

- One common point of ingress
- Complete view of the network
- Flows captured in one place

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	Summary
The Scenario			

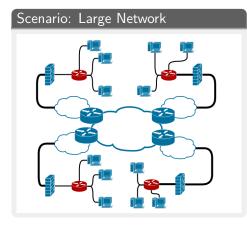
Scenario: Large Network


- A distributed monitoring system is required
- Reactive security utilizing distributed IDSs

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	Summary
The Scenario			

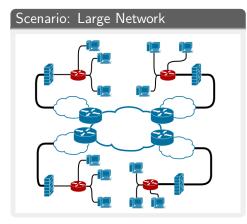

• A distributed monitoring system is required

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	Summary
The Scenario			


• A distributed monitoring system is required

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	Summary
The Scenario			

• A distributed monitoring system is required


Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	
0000			
The Scenario			

- Multiple ingress points
- Partial view of the network
- Flows aggregated in many places

A distributed monitoring system is required

Securing Complex Networks	Discovering Anomalies in Flows	Scalable Distributed System	
0000			
The Scenario			

- Multiple ingress points
- Partial view of the network
- Flows aggregated in many places

- A distributed monitoring system is required
- Reactive security utilizing distributed IDSs

Flow Monitoring

- Distributed monitoring with **IsarFlow**
- To collect, aggregate and perform anomaly detection

Anomaly Detection

- To detect unknown problems
 - Attacks or intrusions
 - Irregular operation
- Detect anomalies present in flows

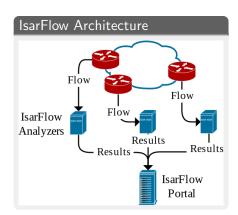
IsarFlow Architecture

Flow Monitoring

- Distributed monitoring with **IsarFlow**
- To collect, aggregate and perform anomaly detection

Anomaly Detection

- To detect unknown problems
 - Attacks or intrusions
 - Irregular operation
- Detect anomalies present in flows

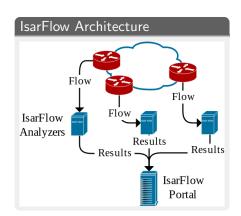

IsarFlow Architecture

Flow Monitoring

- Distributed monitoring with IsarFlow
- To collect, aggregate and perform anomaly detection

Anomaly Detection

- To detect unknown problems
 - Attacks or intrusions
 - Irregular operation
- Detect anomalies present in flows



Flow Monitoring

- Distributed monitoring with IsarFlow
- To collect, aggregate and perform anomaly detection

Anomaly Detection

- To detect unknown problems
 - Attacks or intrusions
 - Irregular operation
- Detect anomalies present in flows

Table of Contents

2 Discovering Anomalies in Flows

Flow Anomaly

Any network traffic exhibiting unexpected or undesired patterns of communication in flows.

- Malicious Activity
 - (D)DoS
 - Port Scans
 - Worms & Botnets
- Operational Problems
 - Alpha Flows
 - Ingress Shifts (Outages)
 - Large quantities of small packets
- Noteworthy Events
 - Flash Crowds
 - Bittorrent Traffic

Flow Anomaly

Any network traffic exhibiting unexpected or undesired patterns of communication in flows.

- Malicious Activity
 - (D)DoS
 - Port Scans
 - Worms & Botnets
- Operational Problems
 - Alpha Flows
 - Ingress Shifts (Outages)
 - Large quantities of small packets
- Noteworthy Events
 - Flash Crowds
 - Bittorrent Traffic

Flow Anomaly

Any network traffic exhibiting unexpected or undesired patterns of communication in flows.

- Malicious Activity
 - (D)DoS
 - Port Scans
 - Worms & Botnets
- Operational Problems
 - Alpha Flows
 - Ingress Shifts (Outages)
 - Large quantities of small packets
- Noteworthy Events
 - Flash Crowds
 - Bittorrent Traffic

Flow Anomaly

Any network traffic exhibiting unexpected or undesired patterns of communication in flows.

- Malicious Activity
 - (D)DoS
 - Port Scans
 - Worms & Botnets
- Operational Problems
 - Alpha Flows
 - Ingress Shifts (Outages)
 - Large quantities of small packets
- Noteworthy Events
 - Flash Crowds
 - Ø Bittorrent Traffic

- Highly dimensional data
- Data can be both numerical and categorical (e.g., protocol names)
- Do not contain network payload
- Often contain sampled data
- Vast quantities of information

Intrusion detection is difficult in this problem space

• Feature extraction and summarization is required

- Volume-based feature extraction
- Entropy-based feature extraction

- Highly dimensional data
- Data can be both numerical and categorical (e.g., protocol names)
- Do not contain network payload
- Often contain sampled data
- Vast quantities of information
- Intrusion detection is difficult in this problem space
- Feature extraction and summarization is required

- Volume-based feature extraction
- Entropy-based feature extraction

- Highly dimensional data
- Data can be both numerical and categorical (e.g., protocol names)
- Do not contain network payload
- Often contain sampled data
- Vast quantities of information
- Intrusion detection is difficult in this problem space
- Feature extraction and summarization is required

- Volume-based feature extraction
- Entropy-based feature extraction

- Highly dimensional data
- Data can be both numerical and categorical (e.g., protocol names)
- Do not contain network payload
- Often contain sampled data
- Vast quantities of information
- Intrusion detection is difficult in this problem space
- Feature extraction and summarization is required

- Volume-based feature extraction
- Entropy-based feature extraction

Entropy-based Feature Analysis

Why is Entropy Interesting?

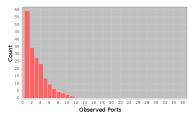
- Every flow feature can be summarized with its entropy
 - $\bullet\,$ e.g., source and destination IP, source and destination port
- Compact representation of all features

Entropy (H):

- Degree of randomness
- Maximum if all values are equal
- Minimal if probability mass concentrates on one value

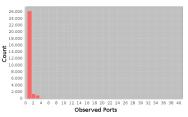
Shannon Entropy (H)

$$X = \{n_i, i = 1, \dots, N\}$$


$$H(X) = -\sum_{i=1}^{N} \left(\frac{n_i}{N}\right) \log_2\left(\frac{n_i}{N}\right)$$
$$0 < H(X) < \log_2 N$$

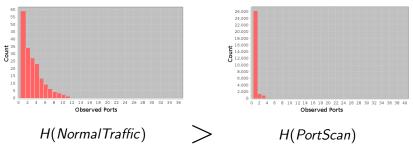
	Discovering Anomalies in Flows		
Entropy		0	

Entropy-based Feature Analysis


Key Property of Entropy

 Entropy measures the concentration or dispersal of a distribution

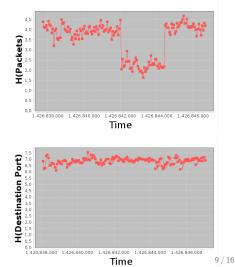
Normal Traffic



	Discovering Anomalies in Flows	Scalable Distributed System	
	00000		
Entropy			

Entropy-based Feature Analysis

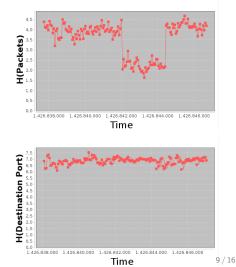
Key Property of Entropy


 Entropy measures the concentration or dispersal of a distribution

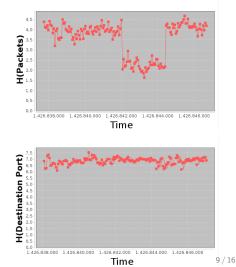
Normal Traffic

Port Scan Traffic

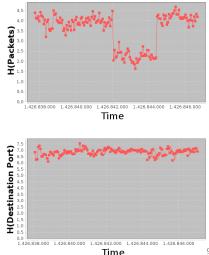
- Select a time window
- Por each window:
 - Build histograms of the desired features
 - Calculate the Entropy of each histogram
 - Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method

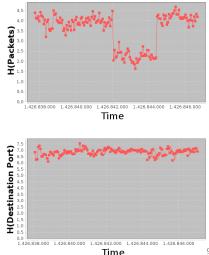


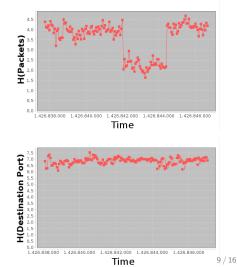
Anomaly Detection using Entropy


Select a time window

Por each window:


- Build histograms of the desired features
- Calculate the Entropy of each histogram
- Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method

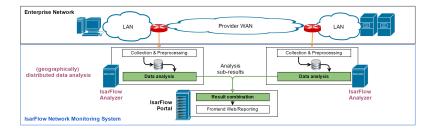

- Select a time window
- O For each window:
 - Build histograms of the desired features
 - Calculate the Entropy of each histogram
 - Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method


- Select a time window
- Por each window:
 - Build histograms of the desired features
 - Calculate the Entropy of each histogram
 - Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method

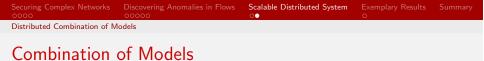
- Select a time window
- O For each window:
 - Build histograms of the desired features
 - Calculate the Entropy of each histogram
 - Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method

- Select a time window
- Por each window:
 - Build histograms of the desired features
 - Calculate the Entropy of each histogram
 - Build a time series of the entropies
- Choose algorithm to detect unusual patterns
 - K-Means clustering
 - Gaussian Mixture Models (GMMs)
 - Subspace Method

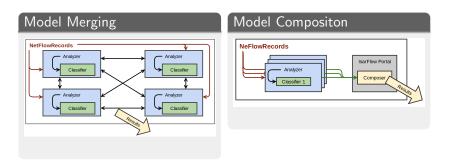
Table of Contents


- 1 Securing Complex Networks
- Discovering Anomalies in Flows
- Scalable Distributed System
 - 4 Exemplary Results

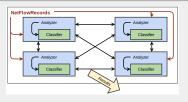
5 Summary



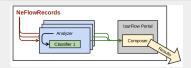
Distributed Monitoring System


Exemplary architecture: The IsarFlow Network Monitoring System

- Distributed collection, storage and data analysis
 - Scales very well with more analyzers
 - No need to send flow data across WAN
- Detection Algorithms must also scale in a distributed way

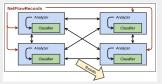


How to derive models of normality in a distributed system?

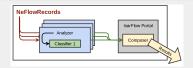

Combination of Models

Model Merging

- Calculate features locally
- Exchange features with other analyzers
- Determine global model of normality - based on all feature information


Model Composition

- Calculate features locally
- Train classifier with local features
- Classify traffic with local classifier
- Forward local classification result to evaluation instance (Composer)

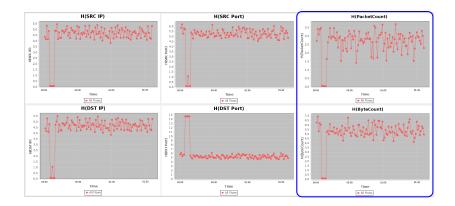

Combination of Models

Model Merging

- + Global Model
- + All analyzer utilize same detection model
- + Learned model can be exchanged
 - Necessity to exchange feature information
 - Features need to be interchangeable

Model Composition

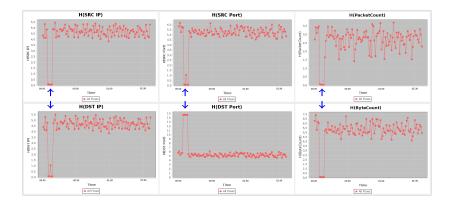
- + Local model might be more precise
- + No feature exchange necessary
- + Smaller overhead
 - Model might not be interchanged
 - Composer has to be trained


Table of Contents

- Securing Complex Networks
- Discovering Anomalies in Flows
- 3 Scalable Distributed System
- Exemplary Results

5 Summary

Capabilities of Entropy


Example: PortScan Entropy Fingerprint

Securing Complex Networks Discovering Anomalies in Flows Scalable Distributed System Exemplary Results

Capabilities of Entropy

Example: PortScan Entropy Fingerprint

Table of Contents

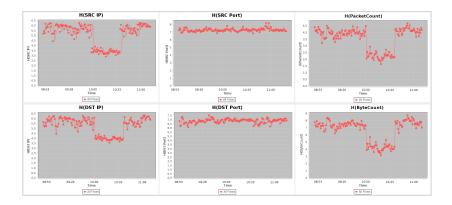
- Securing Complex Networks
- Discovering Anomalies in Flows
- Scalable Distributed System
- 4 Exemplary Results

Summary and Outlook

Summary

- Reactive traffic monitoring is crucial
- Challenges in large enterprise networks
 - Large amount of unsampled flow data
 - Needs distributed collection and data processing
- Entropy as promising feature
 - Difficult to cope with distributed data
 - Approach requires efficient data combination

Outlook

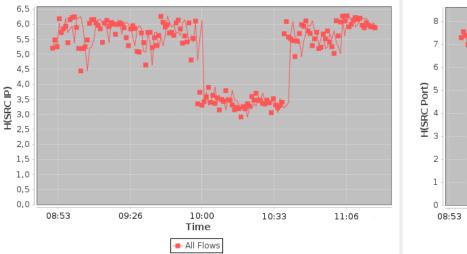

- Thorough study of flow data from a large enterprise network
- Evaluation of feature extraction and classifiers
- Study of detection precision and accuracy

	Discovering Anomalies in Flows	Scalable Distributed System	Summary
			

Thank you

THANK YOU FOR YOUR ATTENTION

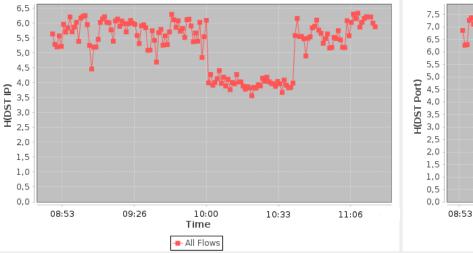
Example: DDoS Reflector Attack detection



viscovering Anomalies in Flo

Scalable Distributed Sy DO Exemplary Results Summar

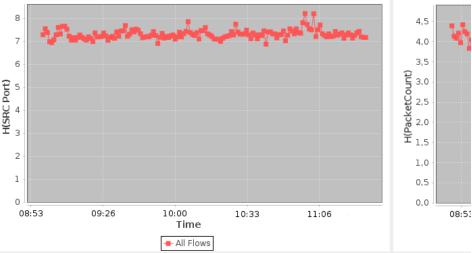
Example: DDoS Reflector Attack detection


H(SRC IP)

iscovering Anomalies in Flo 0000 Scalable Distributed Sy 00 Exemplary Results Summa

Example: DDoS Reflector Attack detection

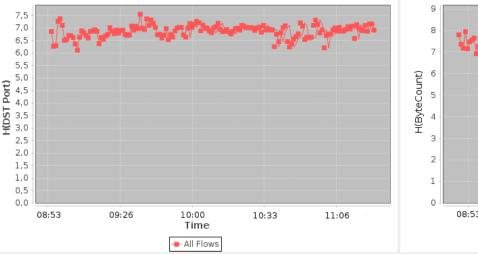
H(DST IP)

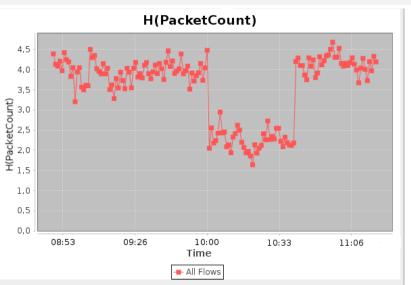


calable Distributed Sy

Exemplary Results Summar

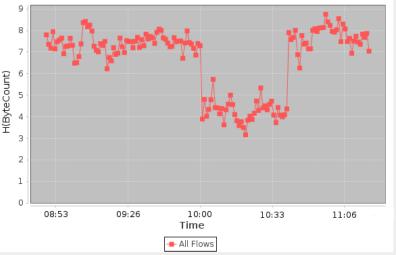
Example: DDoS Reflector Attack detection

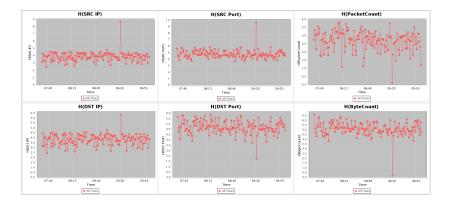

H(SRC Port)

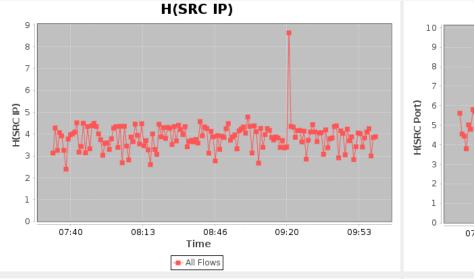

covering Anomalies in Flo 200 Scalable Distributed S 00 Exemplary Results Summa

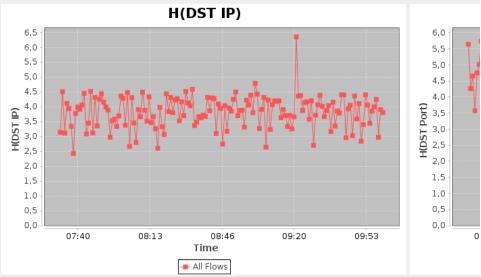
Example: DDoS Reflector Attack detection

H(DST Port)

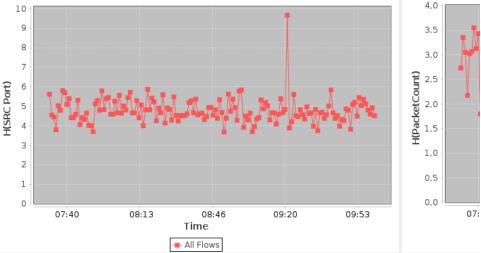


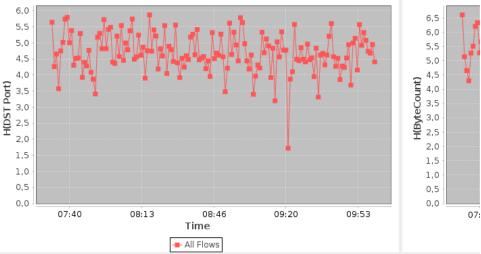

Example: DDoS Reflector Attack detection

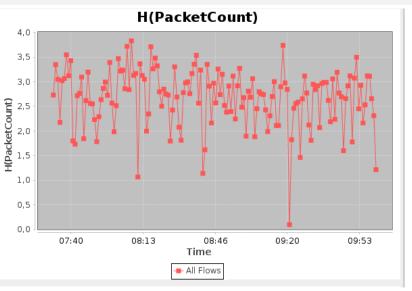



Example: DDoS Reflector Attack detection

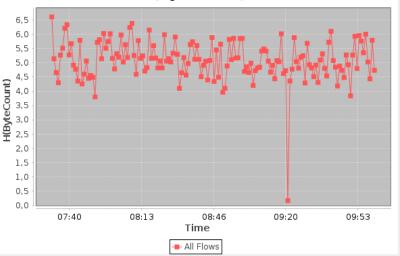

H(ByteCount)







H(SRC Port)



H(DST Port)

H(ByteCount)

