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Note well 
 
l we, authors, didn’t try to patent any of the 

material included in this presentation 
l we, authors, are not reasonably aware of patents 

on the subject that may be applied for by our 
employer 

l if you believe some aspects may infringe IPR you 
are aware of, then fill in an IPR disclosure and 
please, let us know 

http://irtf.org/ipr
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What this I-D is about 
l a follow-up of the “Forward Error Correction (FEC) 

Framework”, A.K.A. FECFRAME 

❍ RFC 6363, M. Watson, A. Begen, V. Roca, October 2011 
❍ produced by the FECFRAME IETF WG 
❍ goal of FECFRAME is to add AL-FEC protection to real-time 

unicast or multicast flows in a flexible way 

❍ also part of 3GPP MBMS standards 
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FECFRAME (RFC 6363) principles 
l a shim layer to add reliability to real-time flows in a 

flexible way 
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FECFRAME principles… (2) 
l flexibility is the key 

❍ can be one or more repair flows that protect one or more 
source flows 

•  many mappings possible
❍ can work with unicast, multicast or broadcast flows 
❍ can be backward compatible in particular situations 
❍ can be deployed in end-hosts or in middle-boxes 

l most of the details are in the FEC Schemes 

l two constraints in RFC 6363 
❍ a single encoding and single decoding points 
❍ limited to block AL-FEC codes 

❍ e.g. Raptor(Q), Reed-Solomon, LDPC-Staircase, 2D XOR 
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Do the same with convolutional codes! 
l we propose a backward compatible extension 

❍ add a sliding window encoding mode, using convolutional 
FEC codes 

❍ block codes can still be used whenever appropriate 
•  e.g., with legacy receivers

l motivations 
❍ with RFC 6363, the block creation time at the source is the 

minimum decoding latency any receiver experiences in case 
of erasures L 

•  no repair symbol for the current block can be received before
•  protection against long erasure bursts is an incentive to 

increase this delay
❍ this delay is avoided with convolutional codes that can 

encode immediately J 
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3 comments and 1 question 
l no fundamental issue in updating RFC 6363 

❍ most changes will be in the new FEC schemes 

l single/multi flows and intra/inter flows coding 
❍ everything is supported since the beginning (see RFC 6363) 

l single versus multi-paths 
❍ supported since the beginning (see RFC 6363) 

l should FECFRAMEv2 support in-network recoding? 
❍ not considered in FECFRAME use-cases and not possible 

with initial block codes 
❍ possible with convolutional codes (as with Tetrys). Is it 

worth? 
⇒ To Be Decided 
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How does it compare to Tetrys? 
l similar coding techniques 

❍ (elastic) sliding encoding window 

l signaling is totally different 
❍ major differences for historical reasons 

•  shim layer (FECFRAME) versus protocol instantiation (Tetrys)

l there’s no feedback at FECFRAME level… 
❍ …whereas Tetrys can use feedback in unicast or small 

multicast groups 
❍ e.g., to identify packets received/recovered 

❍ with large multicast groups, Tetrys does not use 
feedback either and both are pretty similar 
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Next steps… 
l decide for the “in-network recoding” capability 

l work on RFC 6363 update 
❍ technically speaking not a big deal 

l work on FEC scheme(s) in parallel 
❍ to identify potential issues… 
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