
1

FECFRAMEv2
Adding Sliding Encoding

Window Capabilities to the FEC
Framework: Problem Position

Vincent Roca, Inria, France
https://datatracker.ietf.org/doc/draft-roca-nwcrg-fecframev2-problem-position/

July 2015, IETF93, Prague

Note well

l we, authors, didn’t try to patent any of the

material included in this presentation
l we, authors, are not reasonably aware of patents

on the subject that may be applied for by our
employer

l if you believe some aspects may infringe IPR you
are aware of, then fill in an IPR disclosure and
please, let us know

http://irtf.org/ipr

2

What this I-D is about
l a follow-up of the “Forward Error Correction (FEC)

Framework”, A.K.A. FECFRAME

❍ RFC 6363, M. Watson, A. Begen, V. Roca, October 2011
❍ produced by the FECFRAME IETF WG
❍ goal of FECFRAME is to add AL-FEC protection to real-time

unicast or multicast flows in a flexible way

❍ also part of 3GPP MBMS standards

3

FECFRAME (RFC 6363) principles
l a shim layer to add reliability to real-time flows in a

flexible way

4

Application Data Unit (ADU) source data flow(s)

application
(e.g. uses RTP)

FECFRAME
framework

transport
protocol (e.g. UDP)

FEC scheme
 building block

source symbols

repair symbols

FEC repair packet FEC source packet

one or several transport flows

FECFRAME principles… (2)
l flexibility is the key

❍ can be one or more repair flows that protect one or more
source flows

•  many mappings possible
❍ can work with unicast, multicast or broadcast flows
❍ can be backward compatible in particular situations
❍ can be deployed in end-hosts or in middle-boxes

l most of the details are in the FEC Schemes

l two constraints in RFC 6363
❍ a single encoding and single decoding points
❍ limited to block AL-FEC codes

❍ e.g. Raptor(Q), Reed-Solomon, LDPC-Staircase, 2D XOR

5

Do the same with convolutional codes!
l we propose a backward compatible extension

❍ add a sliding window encoding mode, using convolutional
FEC codes

❍ block codes can still be used whenever appropriate
•  e.g., with legacy receivers

l motivations
❍ with RFC 6363, the block creation time at the source is the

minimum decoding latency any receiver experiences in case
of erasures L

•  no repair symbol for the current block can be received before
•  protection against long erasure bursts is an incentive to

increase this delay
❍ this delay is avoided with convolutional codes that can

encode immediately J

6

3 comments and 1 question
l no fundamental issue in updating RFC 6363

❍ most changes will be in the new FEC schemes

l single/multi flows and intra/inter flows coding
❍ everything is supported since the beginning (see RFC 6363)

l single versus multi-paths
❍ supported since the beginning (see RFC 6363)

l should FECFRAMEv2 support in-network recoding?
❍ not considered in FECFRAME use-cases and not possible

with initial block codes
❍ possible with convolutional codes (as with Tetrys). Is it

worth?
⇒ To Be Decided

7

How does it compare to Tetrys?
l similar coding techniques

❍ (elastic) sliding encoding window

l signaling is totally different
❍ major differences for historical reasons

•  shim layer (FECFRAME) versus protocol instantiation (Tetrys)

l there’s no feedback at FECFRAME level…
❍ …whereas Tetrys can use feedback in unicast or small

multicast groups
❍ e.g., to identify packets received/recovered

❍ with large multicast groups, Tetrys does not use
feedback either and both are pretty similar

8

Next steps…
l decide for the “in-network recoding” capability

l work on RFC 6363 update
❍ technically speaking not a big deal

l work on FEC scheme(s) in parallel
❍ to identify potential issues…

9

