
An exchange of ideas, issues and
choices regarding token exchange

 Brian Campbell & Mike Jones

IETF 93
Prague

July 2015

OAuth 2.0 Token Exchange

1

*

Functional Goals

2

l  Exchange one token for another token
l  Token type independence
l  Works for both OAuth tokens and security tokens

l  Can describe properties of desired token, when
applicable, e.g.:
l  Act-As and On-Behalf-Of capabilities

l  (kinda) like WS-Trust

l  Desired OAuth scope values
l  Authenticate involved parties, when applicable
l  Keep simple things simple

Use Cases

3

Client

AS/STS

Somehow
has a
token

Needs a
different

token

l  Trade one token for another
l  Useful in a huge variety of

circumstances
l  Access to heterogeneous

systems
l  Cross domain and otherwise

l  Implicit/explicit impersonation/
delegation
l  Client and/or another user

l  “Edge device” where client is
reverse proxy or gateway
l  Chaining, validation, translation,

down-scoping, etc.
l  Framework should flexible but

keep simple things simple

Drafts Referenced Herein

l  draft-ietf-oauth-token-exchange-02
l  By Mike Jones & Tony Nadalin

l  draft-campbell-oauth-sts-02
l  By Brian Campbell & John Bradley

4

Commonalities in
Approaches

l  Use new grant_type at Token Endpoint
l  Have parameters for types of tokens
l  Have parameters for act_as, on_behalf_of
l  Have parameters for scope values

5

Issues and Decisions Needed

l  The following describes issues and decisions
needed

l  Where existing drafts propose decisions, they
are described

6

Issue: Bikeshedding the Title

l  Options:
l  “OAuth 2.0 Token Exchange” (Jones draft)
l  “OAuth 2.0 Token Exchange: an STS for the REST of

us” (Campbell draft)
l  Observations:

l  Humor is good sometimes
l  The joke does convey the goal of simplicity and a

modernized approach
l  This is really really important

7

Issue: Token Endpoint vs.
New Endpoint

l  Both drafts currently use the token endpoint
l  Assertion Framework RFCs 7521-3 use the token endpoint, which is

working in practice and proven in deployments
l  “We were able to easily add it to our existing infrastructure” – very large SaaS company

l  There’ve been some past suggestions to define a new endpoint
l  RFC 6749 defines a request/response mechanism and format for

the token endpoint along with specific extension points
l  Use of the token endpoint needs to work within that framework

l  Recognizing that different grant types can define different sets of parameters
and both drafts use a new grant type
§  True for request parameters. http://tools.ietf.org/html/rfc6749#section-4.5
§  Response parameters? http://tools.ietf.org/html/rfc6749#section-5

l  If that framework is too restrictive, a new endpoint should be defined

8

Issue: How to Authenticate
the Requester

l  Options:
l  Signature on a request JWT (in Jones draft)
l  OAuth client authentication (in Campbell draft)

l  Observations:
l  RFC 6749 already provides a framework for client authentication

l  Including RFC 7523 JWT Assertion Client Authentication, which
allows for a signature to be used for client authentication

l  Also, sometimes authentication not needed
l  OAuth client authentication allows anonymous
l  JWT “none” alg

l  Key question: Is the requester always an OAuth client?
l  The approaches aren’t necessarily mutually exclusive
l  OAuth Bearer or PoP tokens

9

Issue: Format of Request
l  Options:

l  Primary content of the request is in a JWT that is a request
parameter (in Jones draft)

l  Form request parameters (in Campbell draft)
l  JSON request body (like RFC 7591 Dynamic Client Registration)

l  Observations:
l  JWT approach requires client to have JWT capabilities and will

often result in double base64url encoding
l  Request parameters are simple and efficient
l  JSON request body at token endpoint not supported by RFC

6749 so would necessitate a new endpoint

10

Issue: Way to Pass Input
Token

l  Options:
l  Encode as request JWT (in current Jones draft)
l  Pass as a separate request parameter and type

(in Campbell draft and planned as option for
Jones draft)

l  Observation:
l  To be token type independent, a separate token

input parameter is required in the request
l  rather than the input token always being the JWT

encoding the request (as in the current Jones draft)
11

Issue: Format of Response
l  Options (both drafts use JSON):

l  security_token & security_token_type members (in Jones draft)
l  Standard RFC 6749 OAuth token endpoint response +

security_token_type member (in Campbell draft)

l  Observations:
l  Reuse of RFC 6749 response parameters is confusing to some

while perfectly natural to others
l  token_type & expires_in & scope can provide client with useful info

about the token when it’s opaque
l  token_type & expires_in often unnecessary, since this information is

typically encoded in the token itself when it’s not opaque
l  In one interpretation of RFC 6749, the Jones draft style would

necessitate a new endpoint because it departs from RFC 6749’s
token endpoint response definition

l  In another interpretation, the same endpoint can be used
because the parameters are grant type specific 12

Issue: Indicating the Target of
the Requested Token

l  Providing requester the ability to indicate
where it intends to use the requested
token allows the server to apply policy
l  Campbell draft uses “aud” parameter akin to PoP

Key Distribution (draft-ietf-oauth-pop-key-distribution)

l  (currently required but should be optional)

l  For Jones draft, an “aud” claim would be used
l  Observations:

l  Use cases exist where this is needed and “aud”
seems to fit

l  … “aud” has applicability beyond POP 13

Issue: Act-As, On-Behalf-Of
Terminology

l  Some find the WS-Trust based act-as and
on-behalf-of terminology confusing
l  Even confusion around John Bradley’s confusion

l  Proposed solution:
l  Add examples showing how act-as, on-behalf-of

are used in practice
l  Evaluate specific editorial suggestions on how to

make the meanings clearer
l  Other solution:

l  Use new terminology 14

Issue: Names for OAuth
Token Types

l  Options:
l  urn:ietf:params:oauth:token-type:access-token &

urn:ietf:params:oauth:token-type:refresh-token
URIs

l  “access_token” & “refresh_token” names from
RFC 6749

l  Default a “urn:ietf:params:oauth:token-type:”
prefix when a simple name is used

l  Observations:
l  Neither draft specifies this currently but some

identifiers are needed 15

Issue: Defining actor claim

l  Should we define a way of making a claim
that a party can act for the issuing party?
l  Useful for evaluating act-as requests
l  This would be a JWT claim

l  Similar claims could be defined for other token types
l  Present in Jones draft – not in Campbell draft

l  Observations:
l  Potentially useful though may need refinement
l  Need to maintain token type independence of

overall framework 16

Issue: Proof-of-Possession
Support

l  Mechanisms to handle PoP tokens are needed/desirable
l  For both input and output tokens (independently)
l  For output tokens and key negotiation, consistent use of token

endpoint syntax and semantics allows straightforward
incorporation and reuse of PoP Key Distribution

l  For input tokens, consider existing proof-of-possession proposals
inflight
l  Others?

l  Some use-cases get rather complicated quickly (i.e. the “edge
device” case)

l  Concern over introducing inter-spec dependencies?

17

Way Forward

l  Discuss issues and determine resolutions
l  Produce new draft incorporating decisions
l  Combine editors & produce common draft

l  Maybe also invite Chuck Mortimore to be an editor

18

