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Origins 
•  This effort was started at the suggestion of 

Russ Housley, Jari Arkko, and Stephen Farrell 
of the IETF, to meet the assurance needs of 
supporting IETF protocols in an open and 
transparent manner. 
 

•  But this is NOT an IETF, ISOC, ... project, 
though both contribute. As the saying goes, 
“We work for the Internet.” 
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Goals 
•  An open-source reference design for 

HSMs, not a manufactured product 

•  Scalable, first cut in an FPGA and CPU, 
plan higher speed (ASIC)options later 

•  Composable, e.g. “Give me a key store 
and signer suitable for DNSsec” 

•  Reasonable assurance by being open, 
diverse design team, and an increasingly 
assured tool-chain 
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CrypTech Project 
•  An Open Design, not a Product 

•  Open – everything (docs, design, code) 

•  BSD, CC license for all we develop 

•  Diverse engineers and review 

•  Support for transparency, testing, … 

•  Multiple contributors: IETF, Comcast, 
Google, .SE, SUNET, PIR, ISOC, Afilias, 
RIPE, IANA, Cisco, etc. 
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Diverse Engineering 
Verilog Göteborg & Moscow 
Hardware Adaption Layer (HAL) in Boston 
Software, PKCS#11, … from Boston 
TRNG advice from Germany and States 
Hardware Design & Build from Stockholm 
DNSsec from Göteborg & Stockholm 
Engineering coordination from Tokyo 
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FPGA (ASIC) 
Hashes: SHA*/MD5/GOST   Encrypt: AES/Camellia   PublicKey RSA/ECC/DSA, Block Crypto Modes 

TRNG, BigNum, Modular Exponentiation 

On-Chip Core(s) 
KeyGen/Store, Hash, Sign, Verify, Encrypt, Decrypt, DH, ECDH, 

PKCS#1/5/8, [Un]Load, Stretching, Device Activation/Wipe 

Off-ChipSupport Code 
X.509/PGP/… Packaging, PKCS#7/10/11/15, Backup 

Applications 
DNSSEC, RPKI, PGP, VPN, OTR, random, TCP/AO, …  

Security 
Boundary 

& 
Tamper 
Power 
Timing 

Layer Cake Model 
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Novena Spartan ‘Laptop’ 

FPGA 

ARM 
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Entropy Noise Board 
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Alpha Board Blocks 
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Alpha Board EOY 2015 
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Rev 0.010
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Bridge Board 

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 12 



150718 CrypTech 13 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 

PKCS#11 
 
 
 

Entropy 
(noise board) 

 
 

Hashes (SHA-1/256/512, SHA-3, GOST) 
Symmetric (AES, ChaCha) 

Entropy (Ring Oscillators) 

 
CSPRNG (ChaCha) 
Mixer (SHA-512) 

Entropy Provider Sensing 
 

TRNG 
Control 
& Test 

ModExp / 
BigNum 

AES Key-Wrap, CRT, ... 

FPGA 

ARM 
RSA Sign 
& Verify 

Ethernet / USB 

Applications (DNSsec, RPKI, ...) Off 
Board 

Core Selector and Interface 
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General Core Design 
l  Plain Verilog 2001 compliant RTL code 
l  FPGA vendor and FPGA/ASIC agnostic design 

-  No explicitly instantiated technology 
specific macros 

l  All cores are independent co-processors 
-  Cores do not share resources 
-  Load data and configure, start core and wait for ready signal 

l  32-bit memory like interface 
-  Implemented by core wrapper 
-  API structured similarly for all cores 

l  The real functionality is in _core.v and its sub modules 
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General Core Structure 

foo_core.v 

mux 
 

and 
 

hold- 
regs 

foo.v 

clk 
reset_n 

read_data 

write_data 

address 

cs 

write_data 

we 
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API Example 
ADDR_NAME0       = 8'h00; 
ADDR_NAME1       = 8'h01; 
ADDR_VERSION     = 8'h02; 
 
ADDR_CTRL        = 8'h08; 
CTRL_INIT_BIT    = 0; 
CTRL_NEXT_BIT    = 1; 
 
ADDR_STATUS      = 8'h09; 
STATUS_READY_BIT = 0; 
STATUS_VALID_BIT = 1; 
 
ADDR_BLOCK0      = 8'h10; 
... 
... 
ADDR_BLOCK15     = 8'h1f; 
 
ADDR_DIGEST0     = 8'h20; 
... 
... 
ADDR_DIGEST7     = 8'h27; 
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Core Selector 
l  Current version hard coded for the use 

case 
l  Next version auto generated 
-  Generate Verilog based on config 

l  Instantiate types and number of instances of 
cores 

-  SW support for discovery of cores in a given 
FPGA bitstream 
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Cryptech FPGA system 

Core 0 
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Core n 

core 
select 
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interface 

noise 
input 

FPGA 
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150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 18 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 18 



Core Walk Through 
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SHA1 
l  Implements SHA-1 as specified in FIPS 

180-2 
 

l  Iterative, one cycle/round 
-  82 cycles/block with setup and finish 

 

l  Block expansion (W mem) implemented 
using sliding window with 16 separate 32-
bit registers 
 

l  Testbenches for w_mem, core and top 
level 
-  Using NIST test vectors 
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SHA256 
l  Implements SHA-256 as specified in 

FIPS 180-4 
 

l  Iterative, one cycle/round 
-  66 cycles/block with setup and finish 

 

l  Block expansion (W mem) implemented 
using sliding window with 16 separate 32-
bit registers 
 

l  Testbenches for w_mem, core and top 
level 
-  Using NIST test vectors 

 

l  Heavily tested with SW on the Novena 
 

l  Used for DNSSEC 

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 21 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 21 



SHA512 
l  Implements SHA-512/x (FIPS 180-4) 

-  Including SHA-512/224, SHA-512/256, SHA-512/384 and SHA-512 

l  Iterative, one cycle/round 
-  82 cycles/block with setup and finish 

l  Block expansion (W mem) implemented using sliding window with 
16 separate 64-bit registers 

l  Support for work factor processing with up to 2**32-1 
iterations/block 

l  Testbenches for w_mem, core and top level 
-  Using NIST test vectors 

l  Heavily tested with SW on the Novena 
l  Used in Cryptech as mixer in the TRNG 
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AES (1) 

l  As specified in FIPS 197 
- Support for 128 and 256 bit keys 

l  Iterative, four cycles/round 
- 42 cycles/block with setup and finish 

for AES-128 
- 58 cycles/block with setup and finish 

for AES-256 
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AES (2) 
l  Key expansion performed before any block 

processing 
-  10 cycles for 128 bit keys, 14 cycles for 256 bit 

keys 
 

l  Separate encipher and decipher data paths 
-  Decipher can be removed for use cases where only 

encipher is needed (CTR mode etc) 
-  Encipher and decipher share key expansion 
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AES (3) 
l  Four sbox ROMs 
-  Shared between encipher data path and key 

expansion 
 

l  Testbenches for key expansion, data 
paths, core and and top level 
-  Using NIST test vectors and vectors by 

Sam Trenholme (http://www.samiam.org/
key-schedule.html) 
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AES (4) 

l  Heavily tested with SW on the Novena 
 

l  Used in Cryptech to implement AES Key 
Wrap (RFC 5649, https://tools.ietf.org/
html/rfc5649) 
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ChaCha (1) 
l  Implements the ChaCha stream cipher 
-  http://cr.yp.to/chacha/chacha-20080128.pdf 
-  Support for 128 and 256 bit keys 
-  Support for up to 32 rounds 
-  Support for settable 64-bit initial counter value 

l  Iterative, two cycles/double round 
-  42 cycles/block with setup and finish for 

ChaCha20 
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ChaCha (2) 
l  Testbenches for core and top level 
-  Using DJB test vectors and generated test 

vectors for draft 
https://tools.ietf.org/html/draft-
strombergson-chacha-test-vectors-00 

l  Used in Cryptech as CSPRNG in the 
TRNG 
-  With 256 bit key and 24 rounds 
-  Key, block, IV and initial counter as seed 
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TRNG 
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TRNG (1) 
l  Sub system using multiple cores 
-  avalanche noise entropy provider core 
-  ring oscillator entropy provider core 
- SHA512 core used as entropy mixer 
- ChaCha core used as CSPRNG 
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TRNG (2) 
l  Modular architecture 
-  Support for adding more entropy sources 
-  Support for replacing SHA512 in mixer and ChaCha 

in CSPRNG with other cores 

l  Support for observability and testing and of 
all parts and output 
-  Extract raw noise and entropy from the sources 
-  Inject test vectors and extract results to allow 

verification of functionality 
-  Planned support for on-line testing and alarms for 

entropy sources and CSPRNG 
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TRNG (3) 
l  Scalable performance and security 
-  Number of rounds (default 24) can be 

configured via API 
-  Reseed frequency settable and can be 

forced via API 
-  Can generate ~500 Mbps @50 MHz clock 

frequency 
-  Can instantiate multiple ChaCha cores 

(seeded separately) to scale performance to 
multiple Gbps performance 
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TRNG (4) 
l  Tested using ent, diehard, dieharder 

and several custom tools 
- TBytes of data generated and tested 

so far 
- Test server that provides public 

access to continiously generated data 
being setup 
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Avalanche Noise Board 
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Noise Generation 
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Raw noise 
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Amplified (yellow) 
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Digitized (yellow) 
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Twitterized explanation 
•  To combat component ageing, measure 

time between flanks, use LSB of time 
delta as entropy. Do whitening. 
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Avalanche Entropy (1) 

l  Entropy provider using external noise 
source 
-  Used with the Cryptech Avalanche noise 

source 
-  Noise digitized by board using a schmitt-

trigger and provided as single bit stream 
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Avalanche Entropy (2) 

l  Measures time (cycles) between 
positive flanks on noise source 
-  LSB from cycle counter used as 

entropy bit 
- 32 consecutive bits provided as 

entropy data to consumer (mixer) 
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Avalanche Entropy (3) 
l  Heavily tested using ent, several custom 

tools 
-  Good confidence that the entropy provided 

has good quality 
-  Long term stability needs to be evaluated 

(and being worked on) 
 

l  ~10 kbps data rate 
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Adder based Ring 
Oscillator 
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ROSC Entropy (1) 
l  Entropy provider using internal 

jitter source 
- Using a novel adder based ring 

oscillator (ROSC) suitable for FPGA 
implementation.  
- Designed by Bernd Paysan 
-  ~2 kbps data rate 
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ROSC Entropy (2) 
l  Generates entropy using jitter between 

ring oscillators 
-  Uses 32 separate ring oscillators (running 

at 300+ MHz in Spartan-6) 
-  Samples the output values from the 

oscillators every 256 clock cycles 
-  The outputs from the oscillators are XOR 

combined into a single bit value  
-  32 consequtive bits provided as entropy 

data to consumer (mixer) 
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ROSC Entropy (3) 
l  Heavily tested using ent, several custom 

tools 
-  Fairly good confidence that the entropy 

provides sufficient quality 
-  ROSC feedback path routing critical to 

clock frequency. Should preferrably be 
locked down using Place & Route 
constraints 

-  rosc_entropy core should be requalified 
when moved to a new technology (for 
example a new FPGA family) 

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 46 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 46 



Mixer (1) 
l  Combines entropy from providers to 

create seeds for the CSPRNG 
-  Strict round robin extraction from a set of 

entropy providers 
 

l  Decouples the entropy collection from 
the random number generation by the 
CSPRNG 
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Mixer (2) 
l  Make it hard to predict seed when trying 

to control an entropy source 
 

l  Make it hard (infeasible) to guess mixer 
state and entropy state based on guess 
of bits in seed 
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Mixer (3) 
l  Seeds are intermediate digests for an 

arbitrarily long message 
l  Unless full restart is forced  

l  With SHA-512 as mixer primitive, 1024 
bits of entropy is needed to generate 
512 bits of seed 
-  With the current Cryptech CSPRNG, two 

512-bit seed words are needed. In total 
2048 bits of entropy is needed to be able to 
reseed the CSPRNG 
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CSPRNG 
l  Using the ChaCha stream cipher as 

primitive 
-  24 rounds by default 

 

l   Cipher initialized by 
-  256 bit key 
-  512 bit message block 
-  64 bit IV 
-  64 bit initial counter value 

896 bits in total 
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CSPRNG (2) 

l  Blocks of 512 bits of stream data 
extracted via a FIFO as 32-bit random 
words by consumers 

l  Decouples data generation from 
consumption 
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Funding From 

A Few Private 
Donations 
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