
CrypTech

2015.07.23
Praha

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 1

Origins
•  This effort was started at the suggestion of

Russ Housley, Jari Arkko, and Stephen Farrell
of the IETF, to meet the assurance needs of
supporting IETF protocols in an open and
transparent manner.

•  But this is NOT an IETF, ISOC, ... project,
though both contribute. As the saying goes,
“We work for the Internet.”

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 2

Goals
•  An open-source reference design for

HSMs, not a manufactured product

•  Scalable, first cut in an FPGA and CPU,
plan higher speed (ASIC)options later

•  Composable, e.g. “Give me a key store
and signer suitable for DNSsec”

•  Reasonable assurance by being open,
diverse design team, and an increasingly
assured tool-chain

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 3

CrypTech Project
•  An Open Design, not a Product

•  Open – everything (docs, design, code)

•  BSD, CC license for all we develop

•  Diverse engineers and review

•  Support for transparency, testing, …

•  Multiple contributors: IETF, Comcast,
Google, .SE, SUNET, PIR, ISOC, Afilias,
RIPE, IANA, Cisco, etc.

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 4

Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Diverse Engineering
Verilog Göteborg & Moscow
Hardware Adaption Layer (HAL) in Boston
Software, PKCS#11, … from Boston
TRNG advice from Germany and States
Hardware Design & Build from Stockholm
DNSsec from Göteborg & Stockholm
Engineering coordination from Tokyo

150723CrypTech 5 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

150723CrypTech 6 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

150718 CrypTech 7 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

FPGA (ASIC)
Hashes: SHA*/MD5/GOST Encrypt: AES/Camellia PublicKey RSA/ECC/DSA, Block Crypto Modes

TRNG, BigNum, Modular Exponentiation

On-Chip Core(s)
KeyGen/Store, Hash, Sign, Verify, Encrypt, Decrypt, DH, ECDH,

PKCS#1/5/8, [Un]Load, Stretching, Device Activation/Wipe

Off-ChipSupport Code
X.509/PGP/… Packaging, PKCS#7/10/11/15, Backup

Applications
DNSSEC, RPKI, PGP, VPN, OTR, random, TCP/AO, …

Security
Boundary

&
Tamper
Power
Timing

Layer Cake Model

7 7 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Novena Spartan ‘Laptop’

FPGA

ARM

150718 CrypTech 8 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 8

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Entropy Noise Board

9 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Alpha Board Blocks

150718 CrypTech 10 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 10

Alpha Board EOY 2015

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 11

CPU
ARM Cortex-M4

STM32F429BIT6
208-PIN LQFP

FPGA

Xilinx Artix-7 200T
FBG484-3

Layout compatible with
FGG484

Cryptech Alpha Board
Rev 0.010
2015-05-27 (JoachimS)

Tamper Detect MCU
Atmel AVR @ 20 MHz
Clocked using internal

oscillator

AT Tiny 828R-AY
TQFP-32

SDRAM 64 Mbit
ISSI IS42S16400J

TSOP

USB-UART
interface

FT232H LQFP48

USB-UART
interface

FT232H LQFP48

On board
Power Suppy

block

DC
connector

USB
connector

USB
connector

12
V5V3V
3

2V
5

3V1V
2

1V
37

5

12
-1

9V
 D

C
2.

5A
 ty

p
M

ax
 3

A
pe

ak
 @

 1
2V

Micro
SD Card
2 GByte

4-bit MMC

Keystore mem
Serial Flash

At least 64 Mbit

SPI

Real Time Clock
Microchip

MCP79412
TSSOP

I2C

CPU
LEDs

4
G

PI
O

s

8 GPIOs
CPU

GPIOs
CPU
JTAG

Tamper events
to CPU

Tamper
JTAG

2GPIOs

JTAG

JTAG

Tamper
LEDs

4 GPIOs

FMC SRAM IF @ 45-90 MHz

32 bit data bus
26 bit separate address bus

FPGA Events

4 GPIOs

Tamper
GPIOs

8 GPIOs

CPU - Tamper
serial port

via jumpers
to disable

Rx, Tx
2 wire UART or 2 GPIOs

3V3
1 GPIO

Tamper button

Tamper events
to FPGA

2GPIOs

3V3Tamper
Power Supply

can be replaced
by power from
PSU by setting

jumper

FPGA LEDs
4 + 8 GPIOs

FPGA GPIOs
8 GPIOs

Xilinx Platform Cable
JTAG

Master Key
Memory

8 kByte
Serial SRAM

Microchip
23A640 8TSSOP

Analog Switch

OnSemi
MC14551B

FP
G

A
M

KM
 S

PI

MISO can be
pulled low
by setting

jumper

Switch control

MKM Tamper SPI

1 GPIO
MKM Tamper power control

1V8

MKM power supply can be
connected to PSU by

Setting jumper
MKM

Battery
1V8

FPGA
Config mem

Analog Switch

OnSemi
MC14551B

CPU FPGA Config Mem SPI

CPU FPGA Config Mem Switch Control

SPI

1 GPIO

SPI from CPU to FPGA
Config Mem

and control of switch
can be disabled by
removing jumpers

SPI

SPI

SPI

1V8Write Enable of
Config Mem

can be disabled by
removing jumper

Cryptech
Avalanche

noise
block

FPGA
reset
block

FPGA
clock

source
@ 50 MHz

CPU FPGA Reset

1 GPIO

Reset of FPGA by CPU
can be disabled by
removing jumper

Noise
1 GPIO

Reset_n

FPGA clk

12V must be stable,
low noise since it
feeds the noise

source.

UARTUART

USB 2.0USB 2.0

SPI

3V
Battery

32.768 kHz
Crystal

CPU
reset block

CPU
clock

source

CPU
reset block

FPGA chip select and clock

32 bit data bus
26 bit address bus

SDRAM 512 Mbit
ISSI IS45S32160F

TSOP-II

One chip for each of the
two SDRAM interfaces

SDRAM control for
each SDRAM IF

USART with ISO 7816-3

I2C

Interfaces for possible
Smart Card reader
and display/control
on separate board

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

150718 CrypTech 12 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Bridge Board

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 12

150718 CrypTech 13 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

PKCS#11

Entropy
(noise board)

Hashes (SHA-1/256/512, SHA-3, GOST)
Symmetric (AES, ChaCha)

Entropy (Ring Oscillators)

CSPRNG (ChaCha)
Mixer (SHA-512)

Entropy Provider Sensing

TRNG
Control
& Test

ModExp /
BigNum

AES Key-Wrap, CRT, ...

FPGA

ARM
RSA Sign
& Verify

Ethernet / USB

Applications (DNSsec, RPKI, ...) Off
Board

Core Selector and Interface

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 13

General Core Design
l  Plain Verilog 2001 compliant RTL code
l  FPGA vendor and FPGA/ASIC agnostic design

-  No explicitly instantiated technology
specific macros

l  All cores are independent co-processors
-  Cores do not share resources
-  Load data and configure, start core and wait for ready signal

l  32-bit memory like interface
-  Implemented by core wrapper
-  API structured similarly for all cores

l  The real functionality is in _core.v and its sub modules

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 14 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 14

General Core Structure

foo_core.v

mux

and

hold-
regs

foo.v

clk
reset_n

read_data

write_data

address

cs

write_data

we

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 15 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 15

API Example
ADDR_NAME0 = 8'h00;
ADDR_NAME1 = 8'h01;
ADDR_VERSION = 8'h02;

ADDR_CTRL = 8'h08;
CTRL_INIT_BIT = 0;
CTRL_NEXT_BIT = 1;

ADDR_STATUS = 8'h09;
STATUS_READY_BIT = 0;
STATUS_VALID_BIT = 1;

ADDR_BLOCK0 = 8'h10;
...
...
ADDR_BLOCK15 = 8'h1f;

ADDR_DIGEST0 = 8'h20;
...
...
ADDR_DIGEST7 = 8'h27;

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 16 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 16

Core Selector
l  Current version hard coded for the use

case
l  Next version auto generated
-  Generate Verilog based on config

l  Instantiate types and number of instances of
cores

-  SW support for discovery of cores in a given
FPGA bitstream

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 17 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 17

Cryptech FPGA system

Core 0

Core 1

Core n

core
select

system
IF

Possible
clock boundary

Platform independent
Cryptech HW system

Platform specific
Cryptech HW/SW

interface

noise
input

FPGA

Interface
to CPU

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 18 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 18

Core Walk Through

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 19 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 19

SHA1
l  Implements SHA-1 as specified in FIPS

180-2

l  Iterative, one cycle/round
-  82 cycles/block with setup and finish

l  Block expansion (W mem) implemented
using sliding window with 16 separate 32-
bit registers

l  Testbenches for w_mem, core and top
level
-  Using NIST test vectors

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 20 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 20

SHA256
l  Implements SHA-256 as specified in

FIPS 180-4

l  Iterative, one cycle/round
-  66 cycles/block with setup and finish

l  Block expansion (W mem) implemented
using sliding window with 16 separate 32-
bit registers

l  Testbenches for w_mem, core and top
level
-  Using NIST test vectors

l  Heavily tested with SW on the Novena

l  Used for DNSSEC

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 21 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 21

SHA512
l  Implements SHA-512/x (FIPS 180-4)

-  Including SHA-512/224, SHA-512/256, SHA-512/384 and SHA-512

l  Iterative, one cycle/round
-  82 cycles/block with setup and finish

l  Block expansion (W mem) implemented using sliding window with
16 separate 64-bit registers

l  Support for work factor processing with up to 2**32-1
iterations/block

l  Testbenches for w_mem, core and top level
-  Using NIST test vectors

l  Heavily tested with SW on the Novena
l  Used in Cryptech as mixer in the TRNG

 150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 22 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 22

AES (1)

l  As specified in FIPS 197
- Support for 128 and 256 bit keys

l  Iterative, four cycles/round
- 42 cycles/block with setup and finish

for AES-128
- 58 cycles/block with setup and finish

for AES-256

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 23 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 23

AES (2)
l  Key expansion performed before any block

processing
-  10 cycles for 128 bit keys, 14 cycles for 256 bit

keys

l  Separate encipher and decipher data paths
-  Decipher can be removed for use cases where only

encipher is needed (CTR mode etc)
-  Encipher and decipher share key expansion

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 24 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 24

AES (3)
l  Four sbox ROMs
-  Shared between encipher data path and key

expansion

l  Testbenches for key expansion, data
paths, core and and top level
-  Using NIST test vectors and vectors by

Sam Trenholme (http://www.samiam.org/
key-schedule.html)

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 25 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 25

AES (4)

l  Heavily tested with SW on the Novena

l  Used in Cryptech to implement AES Key
Wrap (RFC 5649, https://tools.ietf.org/
html/rfc5649)

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 26 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 26

ChaCha (1)
l  Implements the ChaCha stream cipher
-  http://cr.yp.to/chacha/chacha-20080128.pdf
-  Support for 128 and 256 bit keys
-  Support for up to 32 rounds
-  Support for settable 64-bit initial counter value

l  Iterative, two cycles/double round
-  42 cycles/block with setup and finish for

ChaCha20

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 27 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 27

ChaCha (2)
l  Testbenches for core and top level
-  Using DJB test vectors and generated test

vectors for draft
https://tools.ietf.org/html/draft-
strombergson-chacha-test-vectors-00

l  Used in Cryptech as CSPRNG in the
TRNG
-  With 256 bit key and 24 rounds
-  Key, block, IV and initial counter as seed

150718 CrypTech 28 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 28

TRNG

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 29 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 29

TRNG (1)
l  Sub system using multiple cores
-  avalanche noise entropy provider core
-  ring oscillator entropy provider core
- SHA512 core used as entropy mixer
- ChaCha core used as CSPRNG

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 30 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 30

TRNG (2)
l  Modular architecture
-  Support for adding more entropy sources
-  Support for replacing SHA512 in mixer and ChaCha

in CSPRNG with other cores

l  Support for observability and testing and of
all parts and output
-  Extract raw noise and entropy from the sources
-  Inject test vectors and extract results to allow

verification of functionality
-  Planned support for on-line testing and alarms for

entropy sources and CSPRNG
150718 CrypTech 31 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 31

TRNG (3)
l  Scalable performance and security
-  Number of rounds (default 24) can be

configured via API
-  Reseed frequency settable and can be

forced via API
-  Can generate ~500 Mbps @50 MHz clock

frequency
-  Can instantiate multiple ChaCha cores

(seeded separately) to scale performance to
multiple Gbps performance

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 32 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 32

TRNG (4)
l  Tested using ent, diehard, dieharder

and several custom tools
- TBytes of data generated and tested

so far
- Test server that provides public

access to continiously generated data
being setup

150718 CrypTech 33 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 33

150723CrypTech 34 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Avalanche Noise Board

150718 CrypTech 35 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Noise Generation

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 35

Raw noise

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 36

Amplified (yellow)

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 37

Digitized (yellow)

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 38

Twitterized explanation
•  To combat component ageing, measure

time between flanks, use LSB of time
delta as entropy. Do whitening.

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 39

Avalanche Entropy (1)

l  Entropy provider using external noise
source
-  Used with the Cryptech Avalanche noise

source
-  Noise digitized by board using a schmitt-

trigger and provided as single bit stream

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 40 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 40

Avalanche Entropy (2)

l  Measures time (cycles) between
positive flanks on noise source
-  LSB from cycle counter used as

entropy bit
- 32 consecutive bits provided as

entropy data to consumer (mixer)

150718 CrypTech 41 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 41

Avalanche Entropy (3)
l  Heavily tested using ent, several custom

tools
-  Good confidence that the entropy provided

has good quality
-  Long term stability needs to be evaluated

(and being worked on)

l  ~10 kbps data rate

150718 CrypTech 42 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 42

Adder based Ring
Oscillator

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 43 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 43

ROSC Entropy (1)
l  Entropy provider using internal

jitter source
- Using a novel adder based ring

oscillator (ROSC) suitable for FPGA
implementation.
- Designed by Bernd Paysan
-  ~2 kbps data rate

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 44 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 44

ROSC Entropy (2)
l  Generates entropy using jitter between

ring oscillators
-  Uses 32 separate ring oscillators (running

at 300+ MHz in Spartan-6)
-  Samples the output values from the

oscillators every 256 clock cycles
-  The outputs from the oscillators are XOR

combined into a single bit value
-  32 consequtive bits provided as entropy

data to consumer (mixer)
150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 45 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 45

ROSC Entropy (3)
l  Heavily tested using ent, several custom

tools
-  Fairly good confidence that the entropy

provides sufficient quality
-  ROSC feedback path routing critical to

clock frequency. Should preferrably be
locked down using Place & Route
constraints

-  rosc_entropy core should be requalified
when moved to a new technology (for
example a new FPGA family)

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 46 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 46

Mixer (1)
l  Combines entropy from providers to

create seeds for the CSPRNG
-  Strict round robin extraction from a set of

entropy providers

l  Decouples the entropy collection from
the random number generation by the
CSPRNG

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 47 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 47

Mixer (2)
l  Make it hard to predict seed when trying

to control an entropy source

l  Make it hard (infeasible) to guess mixer
state and entropy state based on guess
of bits in seed

150718 CrypTech 48 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 48

Mixer (3)
l  Seeds are intermediate digests for an

arbitrarily long message
l  Unless full restart is forced

l  With SHA-512 as mixer primitive, 1024
bits of entropy is needed to generate
512 bits of seed
-  With the current Cryptech CSPRNG, two

512-bit seed words are needed. In total
2048 bits of entropy is needed to be able to
reseed the CSPRNG

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 49 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 49

CSPRNG
l  Using the ChaCha stream cipher as

primitive
-  24 rounds by default

l  Cipher initialized by
-  256 bit key
-  512 bit message block
-  64 bit IV
-  64 bit initial counter value

896 bits in total

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 50 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 50

CSPRNG (2)

l  Blocks of 512 bits of stream data
extracted via a FIFO as 32-bit random
words by consumers

l  Decouples data generation from
consumption

150718 CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 51 150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 51

150718 CrypTech 52 Creative Commons: Attribution-NonCommercial-ShareAlike 2.0

Funding From

A Few Private
Donations

150723CrypTech Creative Commons: Attribution-NonCommercial-ShareAlike 2.0 52

