Design and deployment of secure, robust, and resilient SDN Controllers

Queen's University Belfast

CENTRE FOR SECURE INFORMATION TECHNOLOGIES

SDNRG @ IETF 93

Wednesday, 22 July 2015

Sandra Scott-Hayward

<u>s.scott-hayward@qub.ac.uk</u>

Centre for Secure Information Technologies (CSIT)

Est.2009, Based in The ECIT Institute

Initial funding over £30M (CSIT 2 - £38M)

- 80 People
- Researchers
- Engineers
- Business Development

Largest UK University lab for cyber security technology research

GCHQ Academic Centre of Excellence

Industry Informed

Open Innovation Model

Strong international links

- ETRI, CyLab, GTRI, SRI International
- Cyber Security Technology Summit

SDN Research

and Security

	S	DN Layer A	ffected or	Targeted	
Security Issue/Attack	Application	App-Ctl	Control	Ctl-Data	Data
	Layer	Interface	Layer	Interface	Layer
Unauthorized Access e.g.					
Unauthorized Controller Access	Π		✓	✓	✓
Unauthenticated Application	✓	√	√		
Data Leakage e.g.					
Flow Rule Discovery (Side Channel Attack on Input Buffer)					✓
Forwarding Policy Discovery (Packet Processing Timing Analysis)					✓
Data Modification e.g.					
Flow Rule Modification to Modify Packets			✓	✓	✓
Malicious Applications e.g.					
Fraudulent Rule Insertion	✓	√	√		
Controller Hijacking			✓	✓	✓
Denial of Service e.g.					
Controller-Switch Communication Flood			✓	√	✓
Switch Flow Table Flooding					✓
Configuration Issues e.g.					
Lack of TLS (or other Authentication Technique) Adoption			✓	√	✓
Policy Enforcement	\checkmark	\checkmark	\checkmark		
001010101010 10	11001	0 10			

Sezer, S., et al. "Are We Ready for SDN? Implementation Challenges for Software-Defined Networks" *IEEE Communications Magazine*, July 2013 Scott-Hayward, S.; Natarajan, S.; Sezer, S., "A Survey of Security in Software Defined Networks," *Communications Surveys & Tutorials, IEEE*, 10.1109/COMST.2015.2453114

Problem Description

Increase in components and interfaces for the evolved SDN implementation increases the security challenges of the SDN controller design.

- Objective:Identify requirements of a secure, robust, and resilient SDN

 - Analyse state-of-the-art open-source SDN controllers with respect to the security of their design;
 - Provide recommendations for security improvements

Definition of 'Security'

Secure, Robust and Resilient (referred to as 'security'):

- The controller is designed to reduce the risk of intrusion/attack at the network control layer;
- The controller is able to withstand errors in control layer logic;
 - The controller is able to recover quickly from disruption and maintain an acceptable level of service in the face of faults.

0110 01 1001 1001 10 10 1011011001 000001011011 0101010101	0101100000000000000000000000000000000	100001010 10101 1 100001 01 10000 110 0 0 1 010 0 0 1 010 101101 10 101 10 1 0000 01 01 1010101 10 10101 1010101 10 10101010101 00101110110100 010111011	10

Selected SDN Controllers

Controller	Source	Version	Release	Architecture	Objective	Security Features
ONOS Open Natived Operating System	ON.Lab	Avocet 1.0.0	2014	Distributed	High-availability, Scale-out, Performance	Security-mode ONOS proposed for v2
OpenDaylight	OpenDaylight Project	Helium (Karaf 0.2.0)	2014	Distributed	Enterprise-Grade Performance, High Availability	AAA Service, Foundation of Security Group
ROSEMARY	KAIST, SRI International	-	2014	Centralized	Robust, secure, and high-performance NOS	Process Containment, Resource Usage Monitoring, App PermissionStructure
Ryu	NTT	3.13	2012	Centralized, Multi-Threaded	High quality controller for production environments	Secure control layer communication
SE-Floodlight	SRI International	Beta 2	2013	Centralized	Security-enhanced version of Floodlight controller	Security enforcement kernel (AAA)
		10101010 100100 01010 1010 10101 0101				010111 10 001 110 10 0 010 10

Security Attributes

Security Attributes

Secure Controller Design

	North 01101010101 S 1010100001(C 01000000001 C 00000001 C 0100101011(C 010010101 C 010010101 C 0100101 C 010010 01101(0110101 C 0110101 C 0110101 C 0110101 C 010101 C 010101 C 010101 C	bound API becure bontroller Design hbound API	1 1 10 11101 11 01010100 1110101000011 10110100000101 01001010101		
Controller	ONOS	ODL	ROSEMARY	Ryu	SE-Floodlight
Control Process (Application)	×	×	\checkmark	×	\checkmark

Control Process (Application) Isolation	×	×	✓ (micro-NOS)	*	✓ (Privilege-Based)
Implementation of Policy Conflict Resolution	✓ (Data-Store)	*	*	×	✓ (Algorithm)
Multiple Controller Instances – Resilience	✓ (Clustering)	✓ (Clustering)	*	×	*
Multiple Application Instances – Resilience	*	*	*	×	×
Secure Storage	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1001 0101 1010 1010 0101	00 .0				001 110 10 0 010 10

Secure Controller Interfaces

1010101010	0.0	010000	00101011010101010100001 10	10101010101010100000	
Controller	ONOS	ODL	ROSEMARY	Ryu	SE-Floodlight
IDS/IPS Integration	×	✓ (Defense4All)	×	✓ (Snort)	✓ (BotHunter, Sec. Actuator)
Authentication and Authorization	×	\checkmark	\checkmark	×	\checkmark
Resource Monitoring	×	×	✓	×	*
Logging/Security Audit Service	\checkmark	✓	✓	\checkmark	\checkmark

Recommendations

Recommendations for Future Security Improvements:

1. Design with Software Security Principles

- 2. Secure Default Controller Settings
- 3. Application Future-Proofing

	roomig		
00010101010100	00101010101 01 0100000101110110		

Conclusion

Controller References

ONOS	ON.LAB, "ONOS: Ope Available: http://onosp	en Network Operating Syste roject.org/	em." [Online].
OpenDaylight	OPENDAYLIGHT, "Op Project." [Online]. Avai	enDaylight: A Linux Founda lable: http://www.opendayli	ation Collaborative ght.org
ROSEMARY	S. Shin, Y. Song, T. Le and B. B. Kang, "Rose Operating System," in <i>Computer and Commu</i>	e, S. Lee, J. Chung, P. Por mary: A Robust, Secure, an <i>Proceedings of the 2014 A</i> unications Security. ACM, 2	ras, V. Yegneswaran, J. Noh, nd High-Performance Network <i>CM SIGSAC Conference on</i> 014, pp.78-89.
Ryu 1010	Nippon Telegraph and System." [Online]. Ava	Telephone Corporation, "R ilable: http://osrg.github.io/	yu Network Operating 'yu/
SE-Floodlight	P. Porras, S. Cheung, the Software-Defined I <i>the 2015 Network and</i> February 2015.	M. Fong, K. Skinner, and V Network Control Layer," in <i>I</i> Distributed System Securi	. Yegneswaran, "Securing Proceedings of ty Symposium (NDSS),

CSIT: A Global Cyber Innovation Hub

