# SDN Dependability: Assessment, Techniques, and Tools

Stenio Fernandes (sflf@cin.ufpe.br)

Marcelo Santos (mabs@cin.ufpe.br)

Federal University of Pernambuco, Recife, Brazil







#### Motivation

- Dependability of a system can be understood as the ability to deliver a set of services that can be justifiably trusted
  - It is also related to fault tolerance, availability, and reliability disciplines
- Undependable systems/infrastructure may cause business disruption with a high recovery cost and economic losses
- Infrastructure downtime is costly to organizations (in the order of \$Bi)
- Risk is a crucial factor to the establishment of Service Level Agreements (SLA)

http://www.emersonnetworkpower.com/en-US/Solutions/infographics/Pages/Cost Implications of Outages.aspx http://www.emersonnetworkpower.com/documentation/enus/brands/liebert/documents/white%20papers/2013\_emerson\_data\_center\_cost\_downtime\_sl-24680.pdf http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

# Motivation

- Virtualization in general introduces a number of risk/dependability challenges
  - E.g, an approach based on several virtualized components may imply in a less reliable system
- What are the risks associated to the **SDN/NFV** paradigm?
  - Shift from reliability and availability per network element to end-to-end service
  - For example: How to predict the availability of an e2e service?
- Recent concern for data centers and cloud computing infrastructure
  - <u>Policy-driven automatic network fault remediation (Google Patent, 2015)</u>
  - Tamura, Motoshi, et al. "<u>A study to achieve high reliability and availability on core networks with network virtualization</u>." NTT Docomo Tech. J 15.1 (2013): 42-50.
  - Fault tolerant routing in a non-hot-standby configuration of a network routing system (Google Patent, 2014)
  - Xia, Ming, et al. "<u>Risk-aware provisioning for optical WDM mesh networks</u>." IEEE/ACM Transactions on Networking (TON) 19.3 (2011): 921-931.

#### Dependability





http://www.cs.ncl.ac.uk/publications/inproceedings/papers/374.pdf

# Dependability Attributes Definitions

| Availability    | <ul> <li>readiness for correct service</li> </ul>                                                    |  |
|-----------------|------------------------------------------------------------------------------------------------------|--|
| Confidentiality | <ul> <li>absence of unauthorized disclosure of information</li> </ul>                                |  |
| Integrity       | <ul> <li>absence of improper system state alterations</li> </ul>                                     |  |
| Performance     | <ul> <li>The degree to accomplishes its designated functions<br/>within given constraints</li> </ul> |  |
| Reliability     | <ul> <li>continuity of correct service</li> </ul>                                                    |  |
| Survivability   | <ul> <li>capability to fulfill its mission, in the presence of failures</li> </ul>                   |  |
| Safety          | <ul> <li>absence of catastrophic consequences</li> </ul>                                             |  |
| Maintainability | <ul> <li>ability to undergo repairs and modifications</li> </ul>                                     |  |



#### Design: Controller placement problem



# Design: Controller placement problem



#### Dependability Assessment

- Mean Time To Failure (MTTF) Average time to a failure
- Mean Time To Repair (MTTR) Average time under repair
- Mean time between failures (MTBF) Average time between failures

• Availability (A) = % time correct 
$$\square \square \square A = \frac{MTTF}{MTTF + MTTR}$$
 or  $A = \frac{MTBF}{MTBF + MTTR}$ 

- Series components reduce availability
- parallel (redundant) components increase availability



Reliability analysis using division technology for the mesh network



\*Lin, Cheng-Min, et al. "A mesh network reliability analysis using reliability block diagram." *Industrial Informatics (INDIN), 2010* 8th IEEE International Conference on. IEEE, 2010.



| Component | MTTF (h) | MTTR (h) |
|-----------|----------|----------|
| Link      | 19996    | 12       |
| Router    | 320000   | 1        |

\*MMTF and MTTR for physical nodes and links components





• 4 Routers

• 5 Links



Availability (A) = **97.2316%** Downtime per Month = **20.44 hours** 

| Availability   | Downtime per Year | Downtime per Month | Downtime per week |
|----------------|-------------------|--------------------|-------------------|
| 90%            | 36.5 days         | 72 hours           | 16.8 hours        |
| 95%            | 18.25 days        | 36 hours           | 8.4 hours         |
| 98%            | 7.3 days          | 14.4 hours         | 3.36 hours        |
| 99%            | 3.65 days         | 7.20 hours         | 1.68 hours        |
| 99.5%          | 1.83 days         | 3.6hours           | 50.4 min          |
| 99.9%          | 8.76 hours        | 43.2               | 10.1              |
| 99.95%         | 4.38 hours        | 21.56              | 5.04              |
| 99.99% (four)  | 52.6 min          | 4.32 min           | 1.01 min          |
| 99.999% (five) | 5.26 min          | 25.9 s             | 6.05 s            |
| 99.9999% (six) | 31.5 s            | 2.59 s             | 0.605 s           |

# Dependability Tools and Techniques

- Reliability Block Diagram (RBD)
- Markov Chains
- Reliability Graphs
- Fault Trees (FT)
- Stochastic Petri Networks (SPN)

How to calculate dependability



- Efficient placement of virtualized components
- Accurate Monitoring and Management

Improving Dependability

# Dependability Concerns in SDN

- How to assess dependability in the network?
- What should we monitor dependability?
- What is the overhead cost?



#### Dependability Concerns in SDN



#### Next steps: Prospective approaches

Raise awareness in the SDN community

• Informational Draft

Discuss strategies for dependability information dissemination

Discuss strategies for dependability assessment Discuss strategies to improve dependability attributes

# Concluding remarks

- Virtualized networking environments need proper design
  - It should include dependability assessment of all physical and virtualized elements
- Lack of strategies to assess and improve dependability in SDN environments
  - An e2e service may present low availability/reliability due to the number of components involved
- Accurate dependability assessment, and effective tools, and techniques should be discussed in order to increase the dependability in SDN

# Some references

- Xia, Ming, et al. "<u>Risk-aware provisioning for optical WDM mesh networks</u>." IEEE/ACM Transactions on Networking (TON) 19.3 (2011): 921-931
- 2. S. Fernandes, et al., "Dependability assessment of virtualized networks." Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012.
- 3. <u>Policy-driven automatic network fault remediation</u> (Google Patent, 2015)
- 4. Tamura, Motoshi, et al. "<u>A study to achieve high reliability and availability on core networks with network virtualization</u>." NTT Docomo Tech. J 15.1 (2013): 42-50.
- 5. Jarschel, M.; Zinner, T.; Hossfeld, T.; Tran-Gia, P.; Kellerer, W., "Interfaces, attributes, and use cases: A compass for SDN," *Communications Magazine, IEEE*, vol.52, no.6, pp.210,217, June 2014
- 6. Lin, Cheng-Min, et al. "A mesh network reliability analysis using reliability block diagram." *Industrial Informatics (INDIN), 2010 8th IEEE International Conference on*. IEEE, 2010.
- 7. Soares, J.; Goncalves, C.; Parreira, B.; Tavares, P.; Carapinha, J.; Barraca, J.P.; Aguiar, R.L.; Sargento, S., "Toward a telco cloud environment for service functions," *Communications Magazine, IEEE*, vol.53, no.2, pp.98,106, Feb. 2015
- 8. Avizienis, A.et al., "Fundamental Concepts of Dependability", In Proceedings of the 3rd IEEE Information Survivability Workshop (ISW-2000), Boston, Massachusetts, USA, October 24-26, 2000 pp. 7-12
- 9. Trivedi, K.S.; Dong Seong Kim; Roy, A.; Medhi, D., "Dependability and security models," *Design of Reliable Communication Networks, 2009. DRCN 2009. 7th International Workshop on*, vol., no., pp.11,20, 25-28 Oct. 2009
- 10. Gartner Report The Cost of Downtime: <u>http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/</u>
- 11. Information Week IT Downtime Costs \$26.5 Billion In Lost Revenue: <u>http://www.informationweek.com/it-downtime-costs-\$265-billion-in-lost-revenue/d/d-id/1097919</u>

# SDN Dependability: Assessment, Techniques, and Tools







