SDN Performance Monitoring

Klaus Wehmuth Artur Ziviani

National Laboratory for Scientific Computing (LNCC) Petrópolis, RJ, Brazil

SDNRG, July 22, 2015, IETF 93 Prague

SDN performance monitoring

- At the control plane
 - performance monitoring of the SDN controller
 - Benchmarking Methodology for SDN Controller Performance draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00

- At the data plane

- performance monitoring of the network provided by the SDN
- some recent frameworks being proposed to monitor QoS or other data plane related metrics

SDN performance monitoring: Some related works appearing in the last couple of years

- PayLess: A Low Cost Network Monitoring Framework for Software Defined Networks, S. Chowdhury et al., IEEE/IFIP Network Operations and Management Symposium (NOMS), 2014
- OpenNetMon: Network monitoring in OpenFlow software-defined networks, N. Van Adrichen et al., IEEE/IFIP Network Operations and Management Symposium (NOMS), 2014
- Interactive Monitoring, Visualization, and Configuration of OpenFlow-Based SDN, P. Isolani et al., IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2015
- Scalable Software-Defined Monitoring, P. Sköldström et al., presented at SDNRG in IETF 92, Dallas, TX, USA, March 2015.

Why SDN performance monitoring?

- Applications
 - QoS management
 - $\circ~$ Link / flow usage
 - Anomaly detection
 - Traffic matrix estimation
 - \circ Traffic engineering

o ...

What to measure in SDN

- Collect available data
 - From SDN switches / routers
 - From SDN controllers
 - \circ From NFVs
 - From active measurements
 - 0
- Use gathered data to infer other measures

A reference architecture for SDN performance monitoring?

 Current SDN performance monitoring frameworks are ad hoc initiatives and typically OpenFlow oriented

• A general agnostic reference architecture for SDN performance monitoring may be useful

Reference architecture proposal

7

- Southbound interface
 - Collects monitoring data from the SDN data plane

- Westbound interface
 - Collects monitoring data from the SDN control plane

- Northbound interface
 - Provides performance measurements for SDN applications

- Service discovery
 - Discovery of available monitored devices and data provided by them
 - Selection of data needed for performing the desired monitoring functions

- Scheduler
 - Scheduling of data pull and push (if available) from devices
 - Scheduling of active measurements

- Active monitoring
 - Execution of active measurements

- Integration and inference
 - Integration of data received from all devices by passive and active measurements
 - Inference of indirect measures from the available data

- Processing of requests
 - Analysis of the monitoring requests received
 - Configuration and scheduling of measurements required to fulfil the requests received from client applications

Next steps

- We believe it is worth addressing these issues by working in a draft like
 - "A Reference Architecture for SDN Performance Monitoring"
- Suggestions are, of course, welcome!

Klaus Wehmuth

klaus@Incc.br

Artur Ziviani ziviani@lncc.br

Acknowledgements:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Comitê Gestor da Internet no Brasil