SDN
Performance Monitoring

Klaus Wehmuth
Artur Ziviani

National Laboratory for Scientific Computing (LNCC)
Petrópolis, RJ, Brazil

SDNRG, July 22, 2015, IETF 93 Prague
SDN performance monitoring

- **At the control plane**
 - performance monitoring of the SDN controller
 - Benchmarking Methodology for SDN Controller Performance
draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00

- **At the data plane**
 - performance monitoring of the network provided by the SDN
 - some recent frameworks being proposed to monitor QoS or other data plane related metrics
SDN performance monitoring:
Some related works appearing in the last couple of years

- **Interactive Monitoring, Visualization, and Configuration of OpenFlow-Based SDN**, P. Isolani et al., IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2015
- **Scalable Software-Defined Monitoring**, P. Sköldström et al., presented at SDNRG in IETF 92, Dallas, TX, USA, March 2015.
Why SDN performance monitoring?

- Applications
 - QoS management
 - Link / flow usage
 - Anomaly detection
 - Traffic matrix estimation
 - Traffic engineering
 - ...

What to measure in SDN

- Collect available data
 - From SDN switches / routers
 - From SDN controllers
 - From NFVs
 - From active measurements
 - ...

- Use gathered data to infer other measures
A reference architecture for SDN performance monitoring?

- Current SDN performance monitoring frameworks are ad hoc initiatives and typically OpenFlow oriented

- A general agnostic reference architecture for SDN performance monitoring may be useful
Reference architecture proposal

- Westbound API
 - Service discovery
 - Scheduler
 - Active monitoring
 - Integration Inference
 - Processing of requests

- Northbound API

- Southbound API
Reference architecture interfaces

- Southbound interface
 - Collects monitoring data from the SDN data plane
Reference architecture interfaces

- Westbound interface
 ○ Collects monitoring data from the SDN control plane
Reference architecture interfaces

- Northbound interface
 - Provides performance measurements for SDN applications
Reference architecture interfaces

- Service discovery
 - Discovery of available monitored devices and data provided by them
 - Selection of data needed for performing the desired monitoring functions
Reference architecture interfaces

- Scheduler
 - Scheduling of data pull and push (if available) from devices
 - Scheduling of active measurements
Reference architecture interfaces

- Active monitoring
 - Execution of active measurements
Reference architecture interfaces

- Integration and inference
 - Integration of data received from all devices by passive and active measurements
 - Inference of indirect measures from the available data
Reference architecture interfaces

- Processing of requests
 - Analysis of the monitoring requests received
 - Configuration and scheduling of measurements required to fulfil the requests received from client applications
Next steps

• We believe it is worth addressing these issues by working in a draft like
 • “A Reference Architecture for SDN Performance Monitoring”

• Suggestions are, of course, welcome!
Thanks!

Klaus Wehmuth
klaus@lncc.br

Artur Ziviani
ziviani@lncc.br

Acknowledgements: