

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Scalable Resilience for Software-Defined Networking Using Loop-Free Alternates with Loop Detection

Wolfgang Braun and Michael Menth

http://kn.inf.uni-tuebingen.de

- Avoid loops for single link failures
- But may cause loops for node failures and multiple failures
- Classification: LFAs that avoid loops for
 - Link failures (loop-free condition, LFC)
 - Node failures NPC (node-protecting condition, NPC)
 - Multiple failures (downstream condition, DSC)

Locally reroute traffic in case of failures Use fast-reroute function in OpenFlow 2

- Loop detection principle
 - If packet is rerouted, add node ID to packet header
 - Nodes drop arriving packets with their own ID in the header
- Implementation in OpenFlow (LFA-ID)
 - Assign IDs to nodes
 - Add ID label to packet header
 - Each bit in the ID label stands for a node ID
 - If pkt is rerouted, set node's bit in ID label
 - Add one flow entry to switch that
 - Drops pkts with own node ID in pkt hdr

LFAs in Mesh Topologies

LFAs in Ring Topologies

How to deal with large networks?

- Use large ID labels
- \Rightarrow Large overhead

- Use small ID labels and map one bit to multiple nodes
- ⇒ Packets may be dropped unnecessarily

Impact of ID Label Size

- Results for 14 networks with 50 or more nodes
- Label size of 8 to 16 bits can be sufficient for large networks
 - MPLS labels may be used

	Fat-tree	BCube	DCell
LFC	70.8% - 81.9%	18.8% - 19.1%	21% - 50%
LFC-NPC	70.8% - 81.9%	18.8% - 19.1%	21% - 50%
LFC-DSC	70.8% - 81.9%	18.8% - 19.1%	0% - 28%
LFA-ID	70.8% - 81.9%	18.8% - 19.1%	21% - 50%

Link-Augmented Fat-Tree

W. Braun and M. Menth: Scalable Resilience for SDN Using LFAs with Loop Detection

LFAs in Link-Augmented Fat-Tree

- Full protection for single link failures with LFC
- But many loops in case of node failures and multiple failures
- LFA-ID almost protects 100% even for multiple failures (< 0.3% of flows cannot be protected)

Conclusion & Future Work

- LFAs for OpenFlow-based SDN with loop detection
 - ID label
 - 1 flow entry per switch
 - Coverage depends on network topology
 - Almost full failure coverage in link-augmented fat-tree topologies
 - Future work: add remote LFAs
 - Complete coverage
 - Keep overhead low