Spurious Retransmission Detection (SRD) with the TCP Echo Options

draft-zimmermann-tcpm-spurious-rxmit

Richard Scheffenegger <rs@netapp.com> Alexander Zimmermann <alexander.zimmermann@netapp.com>

Problem Statement

Eifel detection

- Uses TCP Timestamp options [RFC 7323] to detect spurious retransmissions
- Limited applicability due to TSecr semantics, and TSval granularity
- No detection of reordering during loss recovery
- Idea: Make every segment including all retransmissions – uniquely identifiable (to the sender)
 - Allows all functionality of Eifel, even during corner cases
 - Enables new capabilities (lost retransmission detection)

Spurious Retransmission Detection (SRD)

Mechanism

- Use TCP Echo Option to send a (small) counter in each segment to keep MSS equal for retransmissions
- Increase counter when sending a new round of retransmissions e.g. (re-)entering loss recovery
- Check counter in received ACK
 - Equal to current value \rightarrow valid retransmission
 - Else spurious retransmissions

Property

 Semantics of TCP Echo allows to determine the exact ordering of transmissions, even in case of reordering

Example (Semantics)

RFC7323 TSecr reflects TS of last in-sequence segment

Example (Eifel vs. SRD)

Granularity of TS often too coarse

Example (Eifel vs. SRD)

Eifel only works on first retransmitted segment

Example (Eifel vs. SRD)

Allows lost retransmission detection

Moving forward...

- Less overhead than RFC7323 Timestamps
- Solves the retransmission ambiguity problem completely
 - More Complex scenarios involving Fwd Loss / Fwd Reordering / ACK Loss / ACK Reordering
 - Enables Lost Retransmission Detection (LRD) while strictly adhering to packet conservation principles
 - QUIC has similar "control sequence number"

Next steps

- Received initial feedback (clarifications)
- Eventually asking for adoption