Spurious Retransmission Detection (SRD) with the TCP Echo Options
draft-zimmermann-tcpm-spurious-rxmit

Richard Scheffenegger <rs@netapp.com>
Alexander Zimmermann <alexander.zimmermann@netapp.com>
Problem Statement

- **Eifel detection**
 - Uses TCP Timestamp options [RFC 7323] to detect spurious retransmissions
 - Limited applicability due to TSecr semantics, and TSval granularity
 - No detection of reordering during loss recovery

- **Idea: Make every segment – including all retransmissions – uniquely identifiable (to the sender)**
 - Allows all functionality of Eifel, even during corner cases
 - Enables new capabilities (lost retransmission detection)
Spurious Retransmission Detection (SRD)

Mechanism
- Use TCP Echo Option to send a (small) counter in each segment to keep MSS equal for retransmissions
- Increase counter when sending a new round of retransmissions e.g. (re-)entering loss recovery
- Check counter in received ACK
 - Equal to current value → valid retransmission
 - Else spurious retransmissions

Property
- Semantics of TCP Echo allows to determine the exact ordering of transmissions, even in case of reordering
Example (Semantics)

- RFC7323 TSecr reflects TS of last in-sequence segment
Example (Eifel vs. SRD)

- Granularity of TS often too coarse
Example (Eifel vs. SRD)

- Eifel only works on first retransmitted segment
Example (Eifel vs. SRD)

- Allows lost retransmission detection
Moving forward…

- Less overhead than RFC7323 Timestamps
- Solves the retransmission ambiguity problem completely
 - More Complex scenarios involving Fwd Loss / Fwd Reordering / ACK Loss / ACK Reordering
 - Enables Lost Retransmission Detection (LRD) while strictly adhering to packet conservation principles
 - QUIC has similar “control sequence number”

- Next steps
 - Received initial feedback (clarifications)
 - Eventually asking for adoption