Quantum safe hybrid ciphersuite for TLS

William Whyte, 2015-07-22
Problem

• Quantum computers make it trivial to break RSA, ECC, DH, …
 – Current TLS traffic is susceptible to a harvest-then-decrypt attack from a passive attacker
• Would like to thwart this attacker --
 – Quantum-safe public key algorithms exist!
• One natural way is to define a quantum-safe ciphersuite, but…
 – Quantum-safe alternatives aren’t widely accepted
 – Some parties may be required to use specific algorithms
 – No good quantum-safe signatures
 – Adding a single new key transport algorithm can cause a ciphersuite explosion
• Proposed solution:
 – Adds only one ciphersuite
 – Doesn’t force you to put all your trust in something new
 – Defeats the attacker!
Proposal

• Create
 – Quantum-safe hybrid ciphersuite identifier (QSH)
 – Extensions for quantum-safe public key and ciphertext
• ClientHello includes
 – QSH identifier
 – “Classical” ciphersuite identifier(s)
 – Ephemeral public key for quantum-safe algorithm
• Server
 – Carries out handshake for preferred classical handshake
 – Encrypts fresh 256-bit secret with quantum-safe public key
• Pre-master secret is concatenation of PMS from classical handshake and quantum-safe secret (+ details)
• Similar approach being socialized within Tor, paper + proof that it doesn’t make security worse
Some details

- Candidate algorithms
 - NTRUEncrypt
 - Patented, patents owned by my employer, Security Innovation
 - Patents usable under GPL
 - Standardized in IEEE, X9
 - Learning with Errors
 - McEliece (but v large keys)

- What classical ciphersuite should I use?
 - Ideally 256-bit level
 - Grover’s quantum algorithm halves key lengths
 - But could work with a 128-bit classical ciphersuite
 - Grover’s algorithm has huge constants!

- Internet draft posted for TLS 1.2 & 1.3
 - Working code

- Performance
 - 128-bit-equivalent NTRU:
 - Keys, ciphertexts = 4800 bits
 - Extra server load = 0.6 * curve25519 computation
 - 256-bit-equivalent NTRU
 - Keys, ciphertexts = 8100 bits
 - Extra server load = 1.4 * curve25519 computation
Discussion

• Pro:
 – Provably does no harm assuming the implementations are correct
 – Low performance overhead especially at server
 – Allows rapid deployment of quantum-safety without having to bet the farm on it

• Con:
 – Keys and ciphertexts are large
 – Complicates the state machine
 – ...?