
MPEG Media Transport Protocol (MMTP)

Imed Bouazizi

MMTP

- Developed by the MPEG as a replacement of MPEG-2 TS
- MMT contains several functions
 - transport protocol (MMTP)
 - Signaling layer
 - FEC Framework

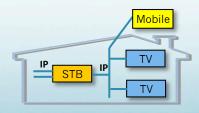
MMT is published as ISO/IEC International Standard 23008-1

Key Transport Scenarios

Provisioned Broadcast

- Terrestrial, satellite, and mobile broadcast
- Channel capacity allocated for air transmission

Provisioned Unicast


- IPTV using provider's network
- Usually multicast in the head-end and unicast in the last hop

Best-effort Unicast

- Streaming OTT content to devices
- Hybrid delivery with reception over broadcast and unicast simultaneously

Internet

Requirements

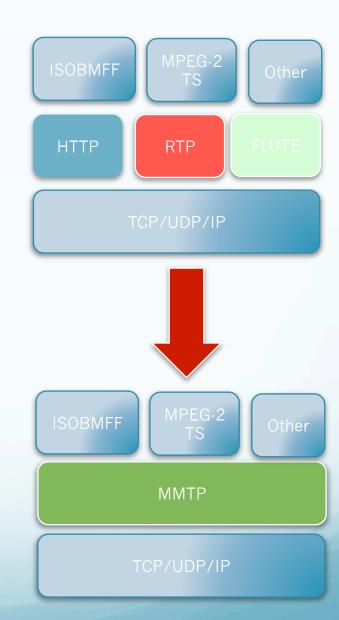
Generic

- Works with any media type without modification
- Supports both real time and non-real time media delivery, i.e. supports both download and streaming

Multiplexing

- Enables multiplexing all media components and related signaling in one session/flow using only 1 port
- Each component is a sub-stream, identified by packet_id

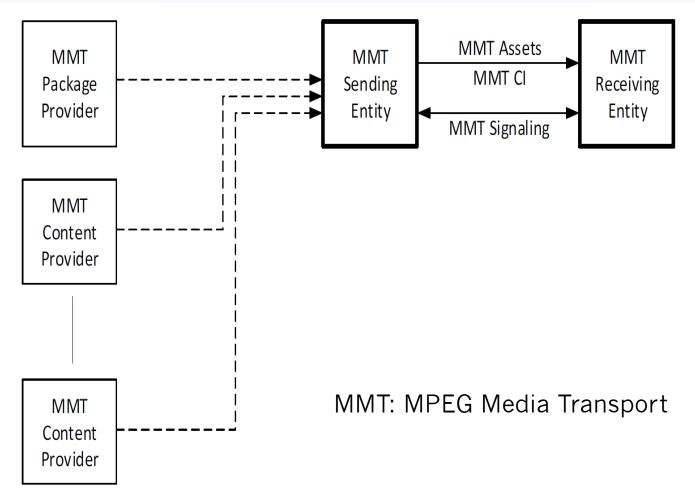
Self-contained

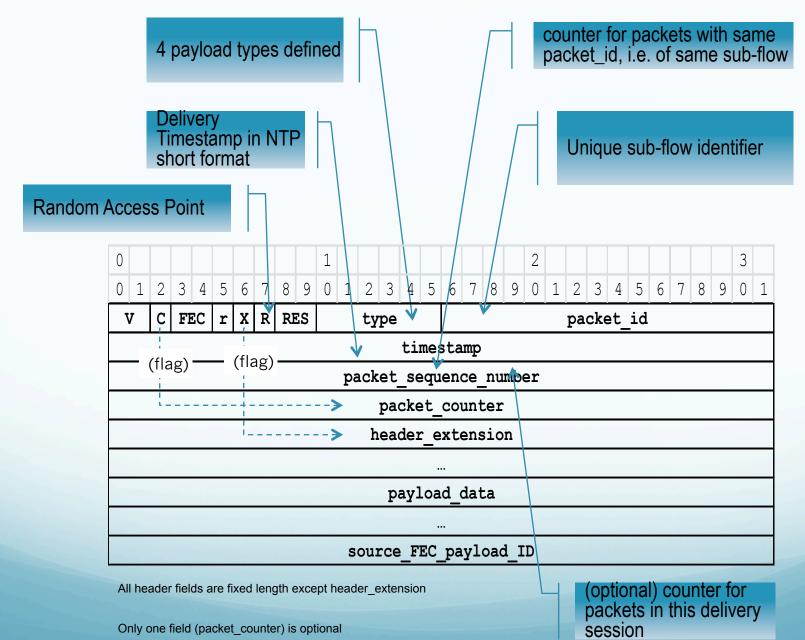

 Signaling information describes all sub-streams of the MMTP flow

Focus on Delivery

- Decouples Transport from Presentation
- Transport Protocol provides delivery timestamp
- Signaling and other Presentation Information provide presentation time

Multi-Source Support


Enable hybrid broadcast/broadband delivery


Why not RTP?

- Lack of Multiplexing
 - One media session per component and without RTP multiplexing, 2
 ports per session
- Server Maintenance
 - RTP Payload Format for every new media codec
 - Support needs to be added to the media server
- Coupling of Presentation and Delivery
 - RTP carries presentation and synchronization information at the transport level
- Limited support for Non-Real Time Media
 - Presentations consist of timed and non-timed media
 - Need other protocol or countless number of payload formats to support NRT

Target Architecture

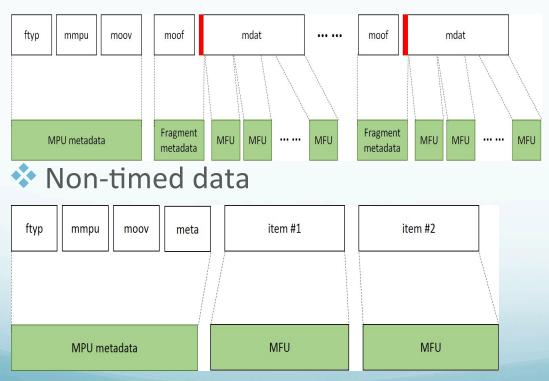
MMTP Packet

7

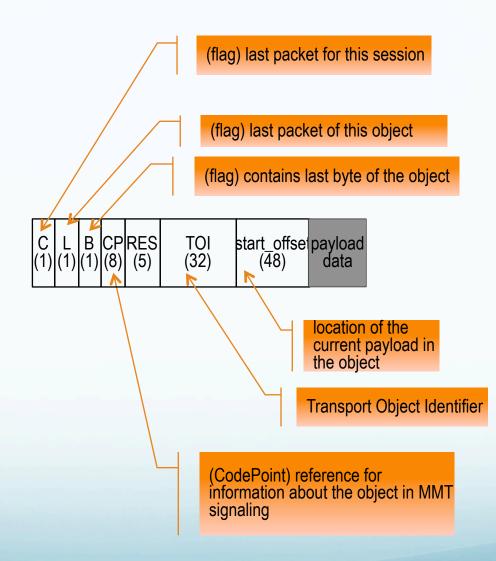
Protocol Procedures

- MMTP session consists of one MMTP flow
- MMTP flow identified by the destination IP address and port number (both SSM and ASM supported)
- MMTP flow consists of multiple sub-flows, each identified by a packet_id
- Each MMTP sub-flow carries a service component (e.g. Audio, Video, Subtitling, Signaling, Generic Data, ...)
- Supports FEC at flow or sub-flow level

Payload Formats


- MMT defines 4 distinct payload formats
 - Media Processing Unit format: optimized for streaming of ISOBMFF file formats as defined in ISO/IEC 14496-12
 - Generic File Delivery format: carries all types of files with self-contained meta-data (similar to FCAST). This is suitable for carriage of non-real time media.
 - Signaling format: carries MMT-defined and private signaling in a common envelope, supporting both binary and XML representation
 - FEC Repair Data format: carries repair data according to the MMT FEC framework that applies to one or more subflows of an MMTP flow
- Fragmentation and Aggregation are performed at payload format level

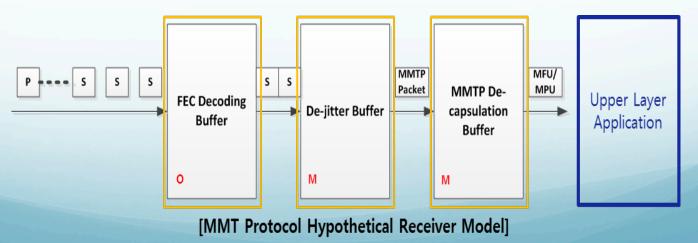
MPU Payload Format


Optimized for ISOBMFF

 generic capability (anything that can be stored in ISOBMFF) can be streamed by MMTP

Timed data

Structure of GFD mode Payload



General Signaling Message Format

· Message	Three Common Fields - Message ID, Version, Length (common information) - Variable size of message depends on the type of message		
Syntax	Val	No. of bits	Mnemonic
signalling_message () { message_id version length		16 8 16	uimsbf uimsbf uimsbf
extension message_payload { }	Me - c	32 Specific Fields for private usage lessage ssage Payload ontains the inform paling message	

Built-In Buffer Model

- Buffer model for jitter compensation and multi-path delay adjustment
 - Consideration
 - Each network has its own transmission delay and error characteristics which may result in various combinations of overall delays between the sender and the receiver in a hybrid delivery
 - Features to achieve
 - Hypothetic buffer model enabling a service to control the overall delay for delivery given various transmission jitter, transmission delay and error recovery delay for each delivery network involved

Congestion Control

- MMTP initially designed to work in provisioned networks such as Broadcast networks where channel capacity is reserved for the service
- Support for Congestion Control through
 - Sender and receiver feedback to estimate delay, delay jitter and packet loss
 - Receiver feedback controlled through setting fraction of reporting receivers
 - Inherent support for stream thinning and bitstream switching
 - Inherent support for Receiver-driven Layered Multicast (RLM) through sub-flows that can be remuxed at receiver effortlessly
 - MMTP may support any RLM-based congestion control algorithm such as WEBRC or TFMCC

Why are we here?

- We want to develop MMTP further in the IETF
- We want to address the Internet (unicast and Multicast)
- We want to reuse existing components such as congestion control and security
- A protocol is needed by many SDOs: MPEG, ATSC, 3GPP, DVB, ...
- Can we revive rmt?
- Can we start a BoF or a new ad-hoc group?
- Or can we do an informational RFC?

Questions

