Low Energy Requirements for WebPush

Hervé Ruellan, Kensuke Yasuma IETF 93 - July 19-24, 2015

Introduction

- Devices receive notifications from the cloud
 - Wish to receive real-time notifications
- Wireless communication consumes lot of energy
 - WebPush is a good step for reducing energy consumption
- This could be further improved

TCP Keep-Alive

- TCP Keep-Alive: required by some intermediaries to keep connection open
- Wang2011
 - 15% of cellular ISPs have timeout of less than 10 min
 - Increase energy consumption by 10 %

_	Connect to server
	Keep Alive

HTTP/2 Ping

HTTP/2 Ping

- Could be used by push server to check if TCP connection is alive
- Would generate unnecessary traffic, increasing energy consumption

Canon

Consecutive Notifications

- Consecutive notifications should be grouped
 - Same active period of wireless sub-system
- Similar to TCP Nagle algorithm

Grouped

HTTP/2 Connection

Conclusion

- WebPush improves energy efficiency of notification systems
- Further improving its energy efficiency is important for lightweight devices

