
Delegated Authenticated Authorization
Framework (DCAF)

draft-gerdes-ace-dcaf-authorize

Stefanie Gerdes, Olaf Bergmann, Carsten Bormann
{gerdes | bergmann | cabo} @tzi.org

IETF-94, ACE Meeting, 2015-11-02

1 / 27

Review Comments

I Renzo: included in 04-version of DCAF:

I Improved readability.
I Removed inconsistencies.
I Clarified definitions of CBOR keys.
I Clarified handling of Ticket Request Messages.
I Improved description of Nonces.

I Ludwig: addressed with 04-version of DCAF and DCAF-COSE

I Also support COSE.
I Address Server-Initiated Token Request (“Pull”).
I Adress piggy-backed protected content in SAM Information

Message (“client-pull”).
I Use a resource to store tokens (DCAF-COSE).
I Bind an authorization token to the security context between C

and RS using COSE.

2 / 27

Features of DCAF

I Secure exchange of authorization information.
I Establish security association between constrained nodes

(secure distribution of session keys).
I Establish security association between a constrained and a

less-constrained nodes.
I Support of class-1 devices (RFC 7228).
I Requires only symmetric key cryptography on the constrained

nodes.
I DCAF-DTLS supports CoAP Observe (RFC 7641) and

blockwise transfer without additional overhead.
I Relieve constrained nodes from managing complex

authentication and authorization tasks.

3 / 27

Features of DCAF (2)
I Supports multiple owners.
I Defines cross-domain constrained to constrained

communication (Required for constrained environments ->
t2trg Meeting Prague).

I Relay security associations of less-constrained devices to
constrained devices: Constrained devices only need the
security association with their less-constrained device.

I Protects both sides of the communication (not only access to
resources).

I Privacy: no device identifiers required on the constrained level.
I Provides a high level of implementation details.
I Explicit transfer of authorization information to the

constrained devices possible: no additional knowledge required
by the constrained nodes.

I Other formats for transmission of authorization information
possible.

I Supports DTLS and Object Security (COSE).
4 / 27

The DCAF universe

I Communication Security using DTLS
(draft-gerdes-ace-dcaf-authorize)

I Server-Initiated Ticket Request (draft-gerdes-ace-dcaf-sitr)
I Application Level Security using COSE

(draft-bergmann-ace-dcaf-cose)

related:

I Examples for using DCAF with less-constrained devices
(draft-gerdes-ace-dcaf-examples)

I Authorization Transitions in the lifecycle of constrained
devices (draft-gerdes-ace-a2a)

5 / 27

Contact S’s Less Constrained Device for Authorization

6 / 27

Access Ticket

7 / 27

Access Ticket: Adding Client Information

8 / 27

Use Access Ticket to Establish Security Context

9 / 27

Key Derivation

10 / 27

Access Ticket Parts

11 / 27

RS Permits Authorized Requests Over Secure Channel

12 / 27

Combined Actors

13 / 27

Flexibility

I DCAF can be used as a simple protocol for secure transmission
of dynamically created session keys (implicit authorization).

I DCAF can additionally securely transmit authorization
information to the server and / or the client.

I DCAF defines how combinations of actors work together.
I DCAF can be used as needed.

14 / 27

Evaluation

Reference implementation of DCAF-DTLS adds

I about 440 Bytes Code
I 54 Bytes data for ticket face
I 722 Bytes parser for CBOR payload

to existing CoAP/DTLS server (ARM Cortex M3).

15 / 27

Evaluation: DCAF Memory Usage (ROM, RAM)

16 / 27

Server-Initiated Ticket Request (SITR)

draft-gerdes-ace-dcaf-sitr

I In some scenarios, C might not be able to reach CAM or SAM
I S requests ticket for C
I C sends CAM information message to S to initiate SITR

17 / 27

CAM Information Message

18 / 27

SI Access Ticket

19 / 27

SI Access Ticket: Adding Server Information

20 / 27

SIT Key Derivation

21 / 27

Problem with Server-Initiated Solutions

I All solutions where the server requests a ticket for the client
(“Pull Model”) are prone to DOS attacks.

I Use solutions where the Client request the ticket whenever
possible

22 / 27

Summary

I mutual authentication client-server, with symmetric keys (no
need to separately obtain RPK to authenticate server)

I can make good use of DTLS-PSK
I can also use COSE with MAC, for transition of untrusted

proxies

23 / 27

DCAF-COSE vs. OSCOAP

24 / 27

DCAF-COSE vs. OAuth Profiling

25 / 27

Discussion

Transport of Ticket Face for DTLS-PSK:

I psk identity

I Opaque for the client, no semantic restrictions
I mandatory -> good interoperability
I All known DTLS libraries pass it to the application to

determine the PSK

I supplemental data (RFC 4680)

I Client and server must support this extension.
I Needs to define a new SupplementalDataType or a new

AuthzDataFormat for client authz (cf. RFC 5878)
I Derivation of master-secret from supplemental data is not

allowed (“Information provided in a supplemental data object
[. . .] MUST NOT need to be processed by the TLS
protocol.”, RFC 4680)

26 / 27

How to proceed

I Accept DCAF as one of the building blocks that ACE is
working on

27 / 27

