Information Distribution over GRASP

(draft-liu-anima-grasp-distribution-00)

Bing Liu (speaker), Sheng Jiang @Anima WG, ietf94, Nov 2015

Background

- This new draft was inherited from draft-liuanima-intent-distribution
 - Not limit the information to Intent only
 - Specifically proposed to use GRASP (A GeneRic Autonomic Signaling Protocol)
- This draft contains:
 - information distribution scenarios
 - requirements analysis of information distribution
 - gap analysis

Distribution Scenarios

- Whole domain distribution
 - E.g. flood network Intent to all the nodes in an autonomic domain
- Selective distribution
 - E.g. distribute some specific policies to the nodes that support a certain objective (possibly based on Discovery cache)
 - E.g. distribute some information to the nodes that belong to a certain role or hierarchy.
 - To reduce signaling storm
 - To gain some information isolation if the information is sensitive
- Incremental distribution
 - E.g. only distribute to the nodes newly get online

Basic Requirements for Node Behavior

- Flooding behavior
 - flood to all interfaces
 - includes both physical interfaces and virtual interfaces such as ACP tunnels
 - loop avoidance
- Selective Flooding
 - only flood the information to part of the interfaces
 - flood to a set of IP addresses (possibly by unicast)
- Point to Point exchange

Basic Requirements for Protocol Indication

- Indicate the distributed information
 - The autonomic nodes need to be able to distinguish the information that needs to be distributed from the other information.
- Indicate the selective flooding criteria
 - the node needs to be indicated which interfaces/addresses should be sent the distributed information.

Gap Analysis 1/2

- Node behavior
 - Flood within ACP
 - [Open Question] The nodes might need to distinguish the ACP tunnel interfaces from other physical/virtual interfaces
 - Loop avoidance
 - Current GRASP defines loop count, which could reduce possible loop messages but could not avoid them
- Indicate the distributed information
 - Current GRASP uses Unsolicited Response messages (encapsulate Synchronization objectives) to indicate information distribution. Nodes receive Unsolicited Response messages MUST flood them to all the other interfaces.
 - [Open Question] Unsolicited Response is an overloading of Response message. The overloading might easily cause protocol state machine bugs in implementations.
 - Alternatives
 - Define a new type of message dedicated for information distribution.
 - Define a new option dedicated for distribution. (could possibly encapsulated in *Request/Negotiation* messages)
 - Add flag(s) in current message(s)/option(s).
 - [Open Question] Which is the most proper method?

Gap Analysis 2/2

- Indicate the selective flooding criteria
 - Alternatives:
 - The criteria is carried in band of the message. (E.g. the message indicates a role or an objective)
 - Pub-sub mode: nodes to subscribe specific information to the distribution source. The source floods the information to subscribers only.
 - Problems:
 - » pub-sub might need a central distribution source, which is in contrast to the architecture
 - » distributed pub-sub between neighbors might too heavy for signaling?
 - [Open Question] Which do we want? Or other alternative(s)?

Other requirements for distribution

Autonomic domain boundary

 The domain boundary devices are supposed to know themselves as boundary. When the distribution messages come to the devices, they do not distribute them outside the domain.

• Arbitrary Injecting Point (Optional?)

 The distributed object SHOULD be injected at any autonomic node within the domain (or within a specific group [TBD])

• Confliction Handling (Optional?)

 there is possibility that two nodes advertise the same object but with conflict content.

• Verification of Distributed Information

- Information integrity verification
 - The receiving node SHOULD be able to verify whether the information has been modified.
- Source authorization verification
 - The receiving node SHOULD be able to verify whether the distribution source has the right to distribute such information (the source might just exceed its authority)

Next Steps

- Solicit opinions on the distribution requirements
- Discuss solutions for the gaps

- A question to the Chairs:
 - It is a work within the scope of current charter
 - Could possibly add it as a new milestone?

Comments?

Thank you!

IETF94, Yokohama