Benchmarking SDN Controller Performance

draft-ietf-bmwg-sdn-controller-benchmark-term-00 draft-ietf-bmwg-sdn-controller-benchmark-meth-00

94th IETF, Yokohama

Bhuvaneswaran Vengainathan, Anton Basil

Veryx Technologies

Mark Tassinari
Hewlett-Packard

Vishwas Manral lonos Corp

Sarah Banks VSS Monitoring

Objective

- Develop a comprehensive set of tests for benchmarking SDN controllers for
 - Performance
 - Scalability
 - Reliability and
 - Security
- Define metrics and methodology to assess/evaluate SDN controllers
- Provide a standard mechanism to measure and compare the

performance of various controller implementations

11/2/15 94th IETF

History

- Submitted in March 2014 (OpenFlow Specific) (draft-bhuvan-bmwg-of-controller-benchmarking-00)
- Presented initial version in IETF-90 meeting
- Submitted in October 2014 (Protocol Agnostic)
 (draft-bhuvan-bmwg-of-controller-benchmarking-01)
- Presented the revised version in IETF-91 meeting
- Submitted in March 2015 (Split into Terminology and Methodology Drafts) (draft-bhuvan-bmwg-sdn-controller-benchmark-term-00) (draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00)
 - · Presented the revised version in IETF-92 meeting
- Submitted in July 2015 (Addressing review comments from IETF 92 meeting) (draft-bhuvan-bmwg-sdn-controller-benchmark-term-01) (draft-bhuvan-bmwg-sdn-controller-benchmark-meth-01)
 - · Presented the revised version in IETF-93 meeting
- Submitted in October 2015 (Successful Call for Adoption)
 (<u>draft-ietf-bmwg-sdn-controller-benchmark-term-00</u>)
 (<u>draft-ietf-bmwg-sdn-controller-benchmark-meth-00</u>)

Test Setup Overview – Standalone Mode

Test Setup Overview – Cluster Mode

Benchmarking Tests Overview

Category	Metrics	Description
Performan ce	1. Network Topology Discovery Time	Time to discover a network topology - nodes and links
	Asynchronous Message Processing Time	 Time taken to process an asynchronous message.
	Asynchronous Message Processing Rate	 Maximum number of asynchronous messages that can BE processed within the test duration.
	4. Reactive Path Provisioning Time	 Time to setup a path reactively between src and dst
	5. Proactive Path Provisioning Time	Time to setup a path proactively between src and dst
	6. Reactive Path Provisioning Rate	 Maximum number of independent paths setup between src and dst reactively
	7. Proactive Path Provisioning Rate	 Maximum number of independent paths between src and dst proactively
	8. Network Topology Change Detection Time	 Time to detect any changes in the network topology.

Benchmarking Tests Overview

Category	Metrics	Description
Scalability	1. Control Sessions Capacity	 Max no. of control sessions be maintained
	2. Network Discovery Size	 Max no. of nodes, links and hosts be discovered
	3. Forwarding Table Capacity	 Max no. of flow entries can be managed in Forwarding table
Reliability	1. Controller Failover Time	 Time to switch from an active controller to the backup controller
	2. Network Re-Provisioning Time	 Time taken to re-route the traffic in alternate path.
Security	1. Exception Handling	 Determine the effect of handling error packets and notifications
	2. Denial of Service Handling	 Determine the effect of handling denial of service (DoS) attacks

Revision 04 - Updates

 Thank you everyone for the support and feedback on this draft for successful WG adoption

Changes Highlight

- Clarified the SDN controller definition and scope of this memo as below.
 "For the purpose of this memo, the SDN controller is a function that manages and controls SDN nodes. Any SDN controller without a control capability is out of scope for this memo"
 - Editorial changes for better readability.

Next Steps

- Align SDN terms defined in this draft with terms that are already defined in other RFCs
- Other Comments??

Thank You!!!

The authors of

draft-ietf-bmwg-sdn-controller-benchmark-term-00

draft-ietf-bmwg-sdn-controller-benchmark-meth-00