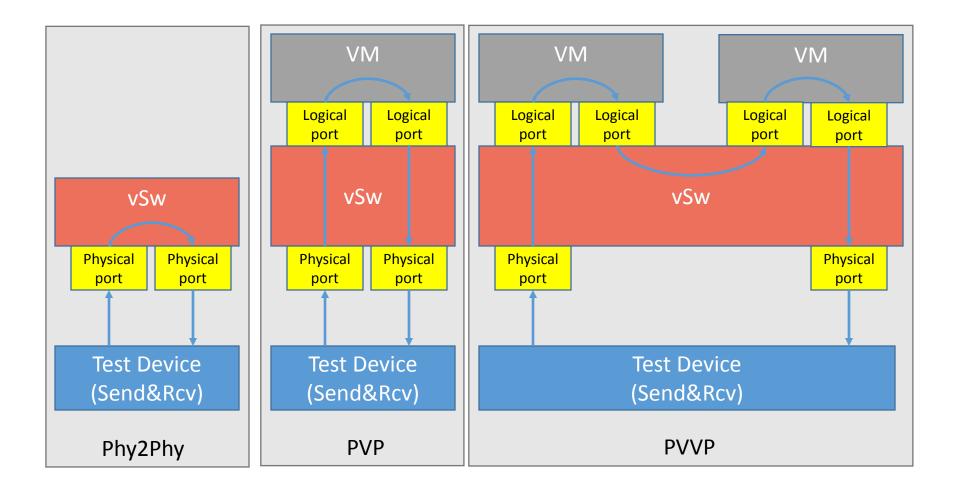
Benchmarking Virtual Switches in OPNFV <u>draft-vsperf-bmwg-vswitch-opnfv-01</u>

 Maryam Tahhan Al Morton

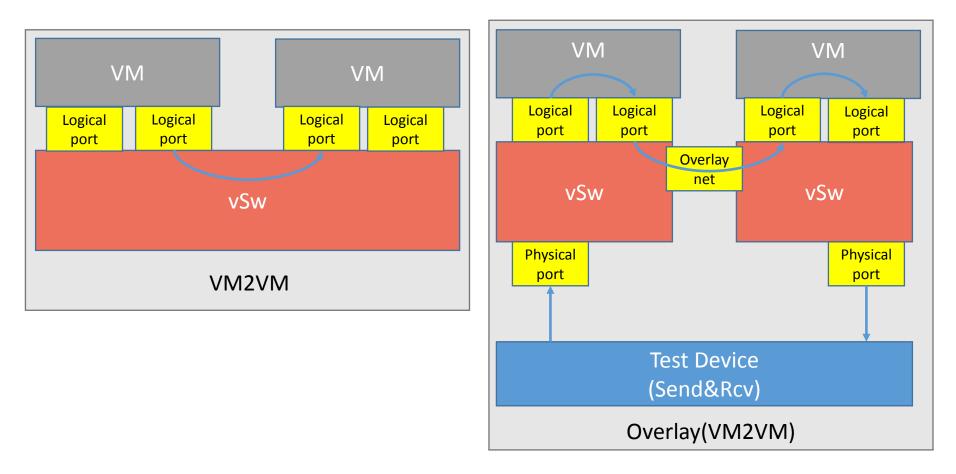
Outline

- VSPERF test specification updates
- VSPERF in practice
- Future work
- Summary

VSPERF test specification updates


- New tests have been added to extend the matrix coverage.
- Soak tests were migrated from using "RFC2544 Throughput" to referring to "RFC 2889 Maximum Forwarding Rate".
- Refined the Fully-Meshed RFC 2889 tests to include deployment and to report the number of ports used for the test.
- Scalability tests now look at the situations where flows are not installed and pre installed on the switch.

Matrix Coverage of the Current LTD

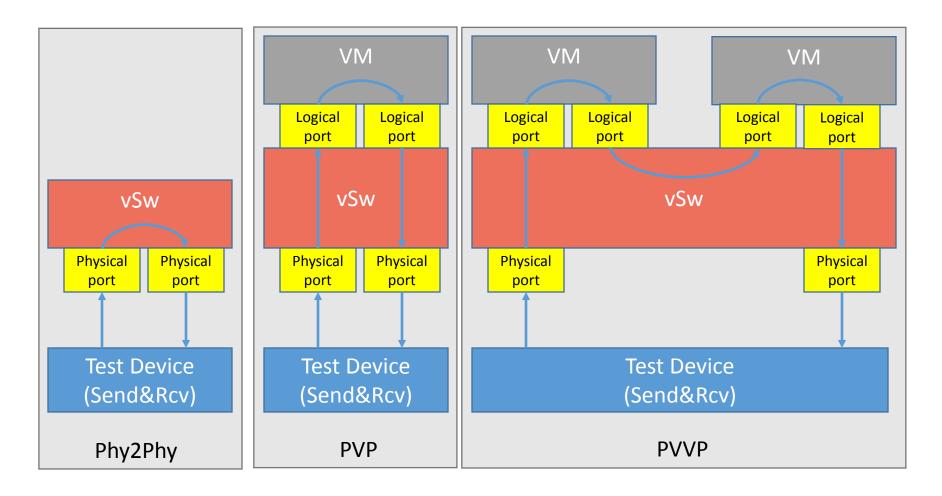

	SPEED	ACCURACY	RELIABILITY	SCALE
Activation	 Activation.RFC2889. AddressLearningRate Activation.RFC2889. AddressCachingCapacity PacketLatency.InitialPacketPr ocessingLatency 	CPDP.Coupling.Flow.Ad dition	 Throughput.RFC2544.Sys temRecoveryTime Throughput.RFC2544.Res etTime 	 Throughput.RFC2889.Ad dressCachingCapacity
Operation	 Throughput.RFC2544.Packet LossRatio Throughput.RFC2544.Packet LossRateFrmMod Throughput.RFC2544.BackTo BackFrames Throughput.RFC2889.MaxFo rwardingRate Throughput.RFC2889.MaxFo rwardingRate Throughput.RFC2889.Forwar dPressure Throughput.RFC2889.Broadc astFrameForwarding RFC2889 Broadcast Frame Latency test CPU.RFC2544.0PacketLoss 	 Throughput.RFC2889.E rrorFramesFiltering Throughput.RFC2544.P rofile 	 Throughput.RFC2544.So ak-→ Throughput.RFC2889.So ak Throughput.RFC2544. SoakFrameModification → Throughput.RFC2889.So akFrameModification PacketDelayVariation.RF C3393.Soak 	 Scalability.RFC2544.0Pac ketLoss MemoryBandwidth.RFC 2544.0PacketLoss.Scalab ility
De-Activation				

New tests in white.

VSPERF LTD Supported Deployment Scenarios

VSPERF LTD Supported Deployment Scenarios cont.

In Practice

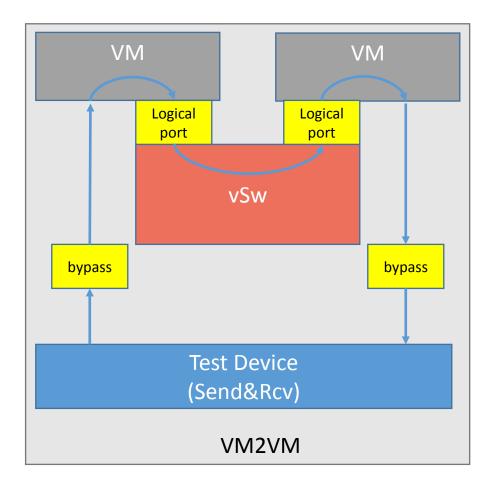

VSPERF Test Framework

- A Python based test framework for characterizing the performance of virtual switches.
- Used to prove out and refine the tests and the methodologies for VSPERF.
- As of today, capable of conducting the following tests on stock OVS and OVS with DPDK:

Available Tests:	
====== * phy2phy_tput:	LTD.Throughput.RFC2544.PacketLossRatio
<pre>* back2back: * abu2abu taut mad</pre>	LTD.Throughput.RFC2544.BackToBackFrames
<pre>* phy2phy_tput_mod_ * phy2phy_cont:</pre>	<pre>vlan:LTD.Throughput.RFC2544.PacketLossRatioFrameModification Phy2Phy Continuous Stream</pre>
* pvp_cont:	PVP Continuous Stream
* pvvp_cont:	PVVP Continuous Stream
	ty:LTD.Scalability.RFC2544.0PacketLoss
* pvp_tput:	LTD.Throughput.RFC2544.PacketLossRatio
<pre>* pvp_back2back:</pre>	LTD.Throughput.RFC2544.BackToBackFrames
* pvvp_tput:	LTD.Throughput.RFC2544.PacketLossRatio
<pre>* pvvp_back2back:</pre>	LTD.Throughput.RFC2544.BackToBackFrames
	LTD.CPU.RFC2544.0PacketLoss LTD.Memory.RFC2544.0PacketLoss
∽ pryzpry_mem_roau:	LTD.Memory.RFC2044.0FacketEoss

• Supported deployment scenarios to date: Phy2Phy, PVP and PVVP.

VSPERF Framework Supported Deployment Scenarios


Matrix Coverage of the Current Test Framework

	SPEED	ACCURACY	RELIABILITY	SCALE
Activation	* Activation.RFC2889. AddressLearningRate * Activation.RFC2889. AddressCachingCapacity *PacketLatency.Initial PacketProcessingLatency	*CPDP.Coupling.Flow.Add ition	 * Throughput.RFC2544. SystemRecoveryTime * Throughput.RFC2544. ResetTime 	* Throughput.RFC2889. AddressCachingCapacity
Operation	* Throughput.RFC2544.PacketLos sRatio * Throughput.RFC2544. PacketLossRateFrmMod * Throughput.RFC2544. BackToBackFrames * Throughput.RFC2889. MaxForwardingRate * Throughput.RFC2889. ForwardPressure * Throughput.RFC2889. BroadcastFrameForwarding * RFC2889 Broadcast Frame Latency test * CPU.RFC2544.0PacketLoss	* Throughput.RFC2889. ErrorFramesFiltering * Throughput.RFC2544.Prof ile	* Throughput.RFC2544. Soak-→ Throughput.RFC2889.Soak * Throughput.RFC2544. SoakFrameModification → Throughput.RFC2889.SoakF rameModification * PacketDelayVariation.RFC33 93.Soak	* Scalability.RFC2544.0Packet Loss * MemoryBandwidth.RFC254 4.0PacketLoss.Scalability
De-Activation				

Implemented tests in white for Phy2Phy, PVP and PVVP.

VM2VM in Practice

- Hasn't been implemented yet
- Concerns around time synchronization between VMs and clock accuracy.
- Recommendation under consideration: Test must include an external HW traffic generator to act as the tester/traffic source and sink.

Future Work

- Integrating multiple traffic gens: Spirent, Moongen and Xena. (current IXIA)
- Methodology extensions: Iterations for the short trial tests
- Prove out and refine methodology and tests through the framework
- Add more tests to the LTD and the framework, an initial list:
 - Scalability Tests adding More VMs in succession and building a performance profile as we add more VMs.
 - Overlay Networking Tests: VXLAN performance testing, encap, decap, encap and decap.
 - Match action performance testing? The cost of the different actions supported by a vSwitch.
 - Classifying L2, L3 and L4 traffic Profile Tests.
 - Stream/bulk Data transfer "unidirectional stream" performance.
 - Request & response/transaction rate tests.
 - Performance testing with Mirroring enabled on the switch.
 - TCP Max connections per second, Max # of active sessions, Max transactions per second.
 - IPv6 considerations
 - Best of N and Worst of N Tests
 - Deactivation tests

Summary

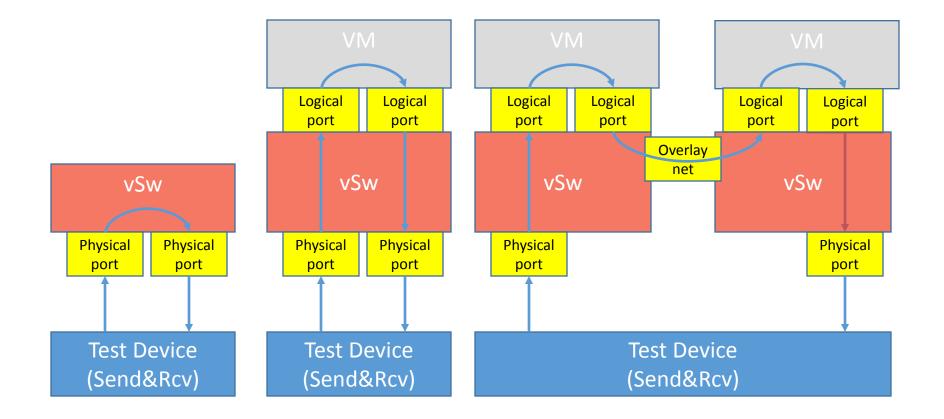
- The LTD and the test framework will be developed continuously for some time.
- We would like your opinion on:
 - WG Adoption of this Summary Draft as a snapshot of next OPNFV Release (Brahmaputra),
 - with pointers to Released and current versions of LTD spec and VSPERF as it grows/evolves.
 - Eventually, Convert entire LTD spec to an Internet Draft/RFC
 - Whether we should continue to provide periodic updates on the expanding/evolving LTD Spec.

BACKUP

What is OPNFV?

Open Platform for NFV Project (<u>OPNFV</u>):

- A Linux Foundation open source project focused on accelerating the evolution of Network Functions Virtualization (NFV).
- OPNFV will establish a carrier-grade, integrated, open source reference platform for NFV that ensures consistency, performance and interoperability among multiple open source components.
- OPNFV will work with upstream projects to coordinate continuous integration and testing while filling development gaps.


How can I join OPNFV?

- <u>Create a Linux Foundation account</u> that you will use for all the tools provided by the Linux Foundation. You also need this account to contribute to OPNFV projects.
- To participate, via contribution, in any <u>project</u> in OPNFV, you will need to contact the project manager/lead for the project.
- Project Roles: contributor, committer, and project lead.

What is VSWITCHPERF AKA VSPERF?

- An <u>OPNFV Project</u>
- Goal: Characterize the performance of a virtual switch for <u>Telco</u> NFV use cases.
- Virtual switches have not typically been designed for Telco NFV use cases that require Telco grade determinism in their performance and support for latency/jitter-sensitive Telco traffic.
- This project proposes defining and executing an appropriate set of tests in order to objectively measure the current Telco characteristics of a virtual switch in the NFVI

Additional Test Setups (single traffic direction shown)

vSwitch deployment scenarios

- Physical port \rightarrow vSwitch \rightarrow physical port .
- Physical port \rightarrow vSwitch \rightarrow VM \rightarrow vSwitch \rightarrow physical port .
- Physical port → vSwitch → VM → vSwitch → VM → vSwitch → physical port.
- Physical port \rightarrow vSwitch \rightarrow VM.
- VM \rightarrow vSwitch \rightarrow physical port.
- VM \rightarrow vSwitch \rightarrow VM.

Please note a Physical port is connected to a traffic generator. A VM is connected to the vSwitch through a logical port.