IPFIX IE Extensions for DDoS Attack Detection draft-fu-dots-ipfix-extension-01

Tianfu Fu futianfu@huawei.com

Dacheng Zhang dacheng.zdc@alibaba-inc.com

Liang Xia (Frank) frank.xialiang@huawei.com

Min Li l.min@huawei.com

What is IPFIX

- Refers to "Applying IPFIX to Network Measurement and Management" by Brian Trammell
 - What is IPFIX
- "IP Flow Information eXport"
- IETF Standard (STD 77)
- a unidirectional protocol for data export;
- a data format providing efficient record-level selfdescription for this protocol;
 - applicable to any collection with large numbers of records sharing similar structures
- and an information model providing the vocabulary for this data format.
 - applicable to most measurement/logging tasks at transport and network layers, extensible beyond.

12 May 2014 RIPE 68 Warsaw - IPFIX Tutorial 4

- Introducing the IPFIX IE-DOCTORS
- Additions to the IANA Information Element (IE) registry on Expert Review basis.
- Guidelines for experts given in RFC 7013:
 - Goal: consistency and usability
 - "New IEs should look like current IEs"
 - Reviews of IEs discussed among IE-DOCTORS, who also assist with suggested changes to IE definitions.
- Accelerated review allows many new applications to be brought to IPFIX without requiring a specification
 - ...and should allow future IPFIX extension to be done in WGs competent for that extension area, not the IPFIX WG

12 May 2014 RIPE 68 Warsaw - IPFIX Tutorial 67

How IPFIX Fits into DOTS

From DOTS charter:

"The aim of DDoS Open
Threat Signaling (DOTS) is to
develop a standards based
approach for the realtime
signaling of DDoS related
telemetry and threat
handling requests and data
between elements concerned
with DDoS attack detection,
classification, traceback, and
mitigation."

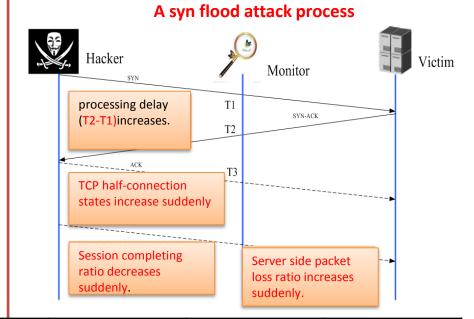
From draft-ietf-dots-requirements:

"Attack telemetry: Collected network traffic characteristics enabling the detection, classification, and in many cases traceback of a DDoS attack.

. . .

To achieve this aim, the protocol must permit the DOTS client to request or withdraw a request for coordinated mitigation; ... and to supply summarized attack information and additional hints the DOTS server elements can use to increase the accuracy and speed of the attack response."

This document focuses on the DDoS related telemetry information part for DOTS, and proposes using a set of IPFIX IEs for the goal of DDoS attack inspection.


IPFIX Information Elements (IEs) for Security

Standard IEs

An example of IEs for security

- Information Model covers nearly all common flow collection use cases:
 - "traditional 5 tuple": sourcelPv4Address, destinationTransportPort, etc.
 - packet treatment: ipNextHopIPv4Address, bgpDestinationAsNumber, etc.
 - Timestamps to nanosecond resolution: flowStartSeconds, flowEndMilliseconds, observationTimeMicroseconds, etc.
 - IPv4, IPv6, ICMP, UDP, TCP header fields: ipTL, icmpTypeIPv6, tcpSequenceNumber, etc.
 - Sub-IP header fields: sourceMacAddress, wlanSSID, mplsTopLabelStackSection, etc.
 - Various counters: packetDeltaCount, octetTotalSumOfSquares, tcpSynTotalCount, etc.
 - Flow metadata information: ingressInterface, egressInterface, flowDirection, ingressVRFID, selectorID, etc...
- >400 defined at http://www.iana.org/assignments/ipfix

12 May 2014 RIPE 68 Warsaw - IPFIX Tutorial 33

Key Metrics for Attack Detection	IP 5 tuple	Session delay(handshake time T2-T1)	Abnormal connection state(Terminate, half-connection, RST, ACK/SYN-ACK)	Fragment packet statistics	DNS statistics (UDP Flood)
	Session completing ratio	Session packet loss ratio	Packet payload signature	Session packet statistics (FSD, Flow Size Distribution)	Others

Major Steps of Using IPFIX in DDoS Attack Inspection (Telemetry Process)

Session Sampling (IPFIX IEs) **Data Mining** Data sampling policies **Fine**

 Abnormal session ratio increases suddenly

- answer-seizure ratio decreases suddenly
- Latency increases suddenly
- Concurrent sessions increase suddenly

•TCP FSD "sunken"

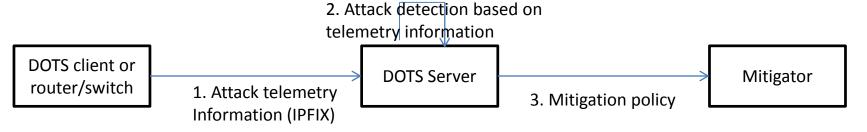
UDP FSD "floating"

 Packet digest repetition degree increases suddenly

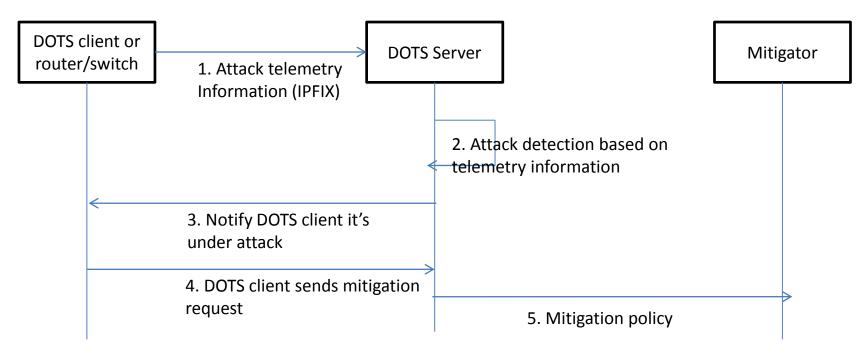
Abnormality Screening

- Abnormal session source destination subnet TOPN
- Abnormal session source \(\) destination IP TOPN
- Abnormal session service TOPN

- Precisely locate the attack source
- Precisely locate the attack target
- Identify abnormal "elephant flow"
- Generate attack suppression policies



Grained


- ACLs block attack traffic
- Sending digest of packet contents block attack traffic
- Sending traffic steering policies for cleaning

Traffic cleaning policies

Major Steps of Using IPFIX in DDoS Attack Inspection (DOTS Elements Interaction)

Mode 1 – DOTS Server Enabled Mitigation

Mode 2 – DOTS Client Enabled Mitigation

Challenges of Using IPFIX in DDoS Attack Inspection

- Packet sampling can not be aware of the session related information: statistics, status, duration, other metrics;
- Low packet sampling probability for small session: the smaller packet sampling probability leads to big difficulty to detect small session based attacks (SYN-Flood, ACK-Flood, etc);
- Lack of support for correlated bidirectional sampling: today's packet sampling is independently applied in each direction and leads to the difficulty to correlate the statistic of both sides. Example: SNMP/DNS Reflected Amplification;
- Current information is not sufficient: without detailed information, it's impossible to distinguish some attacks, such as IP fragment attack and Slowloris HTTP attack, from the ordinary ones

Solution: Security Extension of IPFIX

IPFIX Security Extension IEs

Upstream/downstream counters for packets and octets

- pktUpstreamCount
- pktDownstreamCount
- octetUpstreamCount
- octetDownstreamCount

ICMP echo/reply counters

- icmpEchoDeltaCount
- icmpEchoReplyDeltaCount

- Network session related: completing ratio, abnormal session ratio, concurrent session ratio, half-connection, etc.
- Apply for DDoS flood attack inspection for syn, udp, icmp, dns, ntp, and so on.

TCP connection anomaly information

- A new values is added to FlowEndReason: 0x06 protocol exception timeout
- tcpControlStateBits
- tcpOutoforderTotalCount
- tcpPayloadOctetTotalCount

IPFIX Security Extension IEs (Continue)

Fragment statistic

- fragmentPacketDeltaCount
- fragmentFirstTooShortDeltaCount
- fragmentFlagErrorDeltaCount

DDoS Fragment attack inspection

Flow Metric Distribution

- octetVariance
- flowTimeIntervalVariance
- flowSessionEndMilliseconds
- flowTimeInterval
- serverResponseTime
- clientResponseTime
- sessionResponseTime

- Session packet number/distribution, session size distribution, session running time and response time, session time distribution, etc.
- Apply for various DDoS flood attack inspection: syn, udp, dns, icmp, fragment, etc.

Next Steps

Solicit comments;

Keep on improving

Thanks!

Liang Xia (Frank)