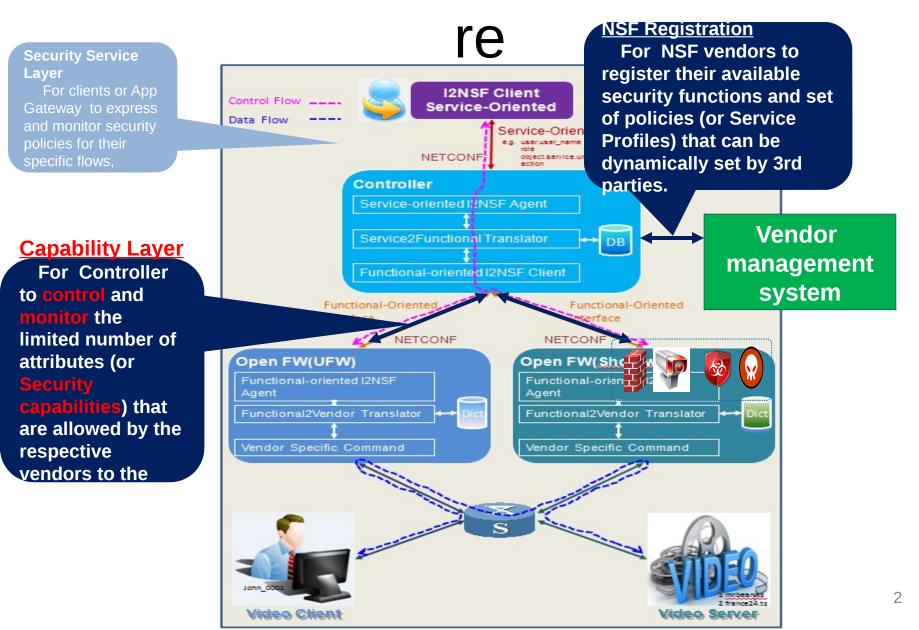
Information Model of Interface to Network Security Fu nctions Capability Interface

draft-xia-i2nsf-capability-interface-im-04


Liang Xia DaCheng Zhang Alibaba Edward Lopez Fortinet Nicolas BOUTHORS

Huawei

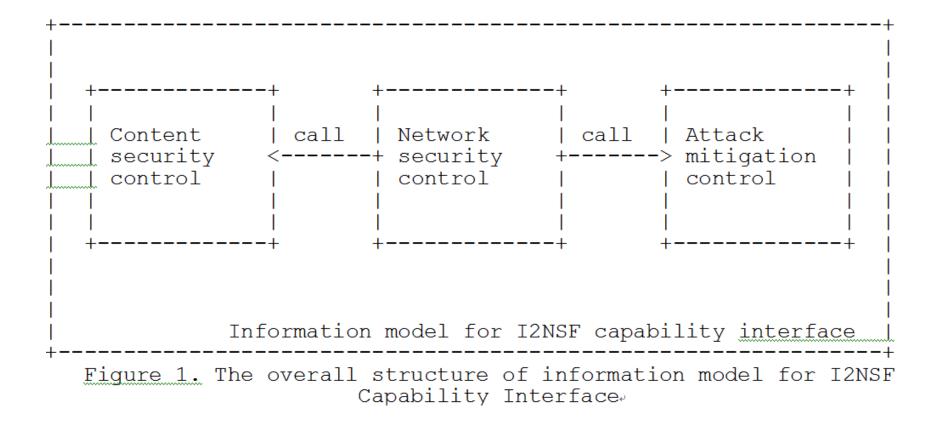
Qosmos

November 2015 Yokohama

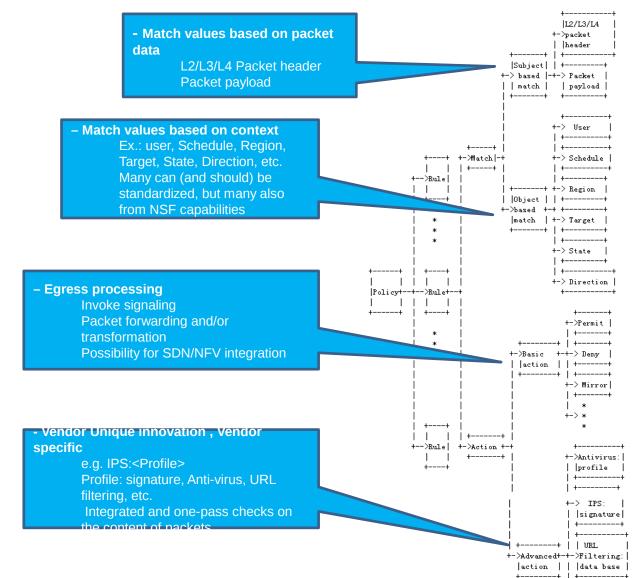
Introduction of I2NSF Architectu

Current Situations of NSF (or Security Ca pability) Provisioning

- Security vendors use <u>proprietary interfaces</u> for NSF prov isioning (i.e., SNMP, MIB, Restful, xml, syslog, etc);
- <u>Various network security capabilities/functions provided</u> by security vendors can not be integrated and applied a s a whole. Furthermore, new network security capabilitie s are appearing quickly;
- NSaaS market grows very fast, which requires the <u>auto</u> <u>matic provisioning</u> of massive NSF instances with high e fficiency and flexibility.


Solution to Address the Problems Relat ed with NSF Provisioning

- <u>A standard capability interface(by I2NSF)</u>
 - Decouple network security controller from s ecurity devices of specific vendors, and vice versa;
 - Only be oriented to the logic network securit y capabilities, independent with specific devi ce implementation;
 - Flow-based paradigm builds a concrete basi s for a large number of security capabilities.


Overview of Security Capabilities

- Network security control:
 - inspecting and processing the network packet/flow;
 - differ in the depths of packet headers and/or payloads they can inspect, the variou s flow and context states they can maintain, and the actions they can apply;
 - use a "Subject-Object-Action-Function" paradigm;
- Content security control:
 - one category of security capabilities applied to application layer that requires: Flex ibility, Generality, Scalability, Automation;
 - detecting the malicious contents: file, url, data block, etc;
 - Security profiles with standardized and configurable input/output parameters to co ntrol its specific functions and output results;
 - Standardized interface for updating its intelligence: signature, and algorithm.
- Attack mitigation control:
 - one category of security capabilities specially used to detect and mitigate various t ypes of network attacks: DDoS attacks, Single-packet attacks;
 - A standard interface is essential through which the security controller can choose and customize the given security capabilities to fight against various kinds of netw ork attacks.

Overall Structure for Information Model for security capability management

Information Model for Network Security C ontrol Block

Key goal: • Flexible and comprehensive semantics; • extensible IM for containing different vendors' security capabilities, in essence, respective difference or innovation.

Match Condition Details

atch Condition	Attributes: Values +	 ++
thernet		Ì
rame	Source/Destination address	
leader	s-VID/c-VID/EtherType	
	 src/dest address	1
IPv4	protocol	
acket	src/dest port	
Header	length	
	flags	
	ttl	
IPv6	protocol/nh	
Packet	src/dest port	
Header	length	
	traffic class	
	hop limit	
	flow label	
СР	Port	
SCTP	syn	
)CCP	ack	
l	fin	
	rst	
	psh	
	l wrg	
	window	1

	sockstress	
Vser		
Schedule	time span	
	days, minutes, seconds,	
Region	country, province, city	
	IP address, network section,	
	network domain	
	service: TCP, VDP, ICMP, HTTP	
Target	application: Gmail, QQ, MySQL	
	device: mobile phone, tablet, PC	
	session state: new, established, related	
State	invalid, untracked	
	access mode: WIFI, 802.1x, PPPOE, SSL	
 Direction 	Direction: from_client, from_server, bidirection, reversed	

Information Model for Content Security C ontrol

Anti-Virus Intrusion Prevention URL Filtering File Blocking Data Filtering Application Behavior Control Mail Filtering ... Information model for content security control

Information Model for Attack Mitigation C ontrol

Attack mitigation	General Shared
capabilites:	Parameters:
SYN flood,	i i
UDP flood,	i i
ICMP flood,	i i
IP fragment flood,	i i
HTTP flood,	i i
HTTPS flood,	i i
DNS flood,	i i
DNS amplification,	
SSL DDoS,	
IP sweep,	
Port scanning,	
Ping of Death,	
Oversized ICMP	
++	++
	Information model
	for attack mitigation
	control

Information Model Graphical Complete Co

<category> ::= <business-system> | <Entertainment> | <internet> | <networ k> |

<service> ::= <name> <id> <protocol> [<protocol-num>] [<src-port>] [<dest-

<general>

<subcategory> ::= <Finance> | <Email> | <Game> | <media-sharing> |

<social-network> | <web-posting> | <proxy> | ...

<data-transmission-model> ::= <client-server> | <browser-based> |<networ king> |

<peer-to-peer> | <unassigned>

<risk-level> ::= <Exploitable> | <Productivity-loss> | <Evasive> | <Data-loss > |

<Malware-vehicle> |<Bandwidth-consuming> | <Tunneling</pre>

<signature> ::= <server-address> <protocol> <dest-port-num> <flow-directi on>

<object> <keyword>

```
<flow-direction> ::= <request> | <response> | <bidirection>
<object> ::= <packet> | <flow>
```

<context based match> ::= [<user-group> ...] [<session-state>] [<schedule >]

[<region-group>]

- <user-group> ::= <user>... <user> ::= (<login-name> <group-name> <parent-group> <password>
 - <expired-date> <allow-multi-account-login> <address-binding
 >) |

<tenant> | <VN-id>

- <session-state> ::= <new> | <established> | <related> | <invalid> | <untrac ked>
- <schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-ti me>

<type> ::= <once> | <periodic>

>

<action> ::= <basic-action> [<advanced-action>]

-

- <advanced-action> ::= [<profile-antivirus>] [<profile-IPS>] [<profile-url-filteri ng>]

<Match> ::= [<subject-based-match>] [<object-based-match>] <subject-based-match> ::= [<L234-packet-header> ...] [<packet-payload> <L234-packet-header> ::= [<address-scope>] [<layer-2-header>] [<layer-3header>] [<layer-4-header>] <address-scope> ::= <route-type> (<ipv4-route> | <ipv6-route> | <mpls-rout e> | <mac-route> | <interface-route>) <route-type> ::= <IPV4> | <IPV6> | <MPLS> | <IEEE MAC> | <INTERFACE <ipv4-route> ::= <ip-route-type> (<destination-ipv4-address> | <source-ipv</pre> 4-address> | (<destination-ipv4-address> <source-ipv4-address>)) <destination-ipv4-address> ::= <ipv4-prefix> <source-ipv4-address> ::= <ipv4-prefix> <ipv4-prefix> ::= <IPV4 ADDRESS> <IPV4 PREFIX LENGTH> <ipv6-route> ::= <ip-route-type> (<destination-ipv6-address> | <source-ipv</pre> 6-address> | (<destination-ipv6-address> <source-ipv6-address>)) <destination-ipv6-address> ::= <ipv6-prefix> <source-ipv6-address> ::= <ipv6-prefix> <ipv6-prefix> ::= <IPV6 ADDRESS> <IPV6 PREFIX LENGTH> <ip-route-type> ::= <SRC> | <DEST> | <DEST_SRC> <layer-3-header> ::= <ipv4-header> | <ipv6-header> <ipv4-header> ::= <SOURCE IPv4 ADDRESS> <DESTINATION IPv4 AD</pre> DRESS> <PROTOCOL> [<TTL>] [<DSCP>] <ipv6-header> ::= <SOURCE IPV6 ADDRESS> <DESTINATION IPV6 A</pre> DDRESS> <NEXT HEADER> [<TRAFFIC CLASS>] [<FLOW LAB EL>] [<HOP_LIMIT>] <object-based-match> ::= [<user> ...] [<schedule>] [<region>] [<target>] [<s</pre> tate>] <user> ::= (<login-name> <group-name> <parent-group> <password> <exp ired-date> <allow-multi-account-login> <address-binding>) | <tenant > | <VN-id> <schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-ti

<Policy> ::= <policy-name> <policy-id> (<Rule> ...)

<Rule> ::= <rule-name> <rule-id> <Match> <Action>

me>

<typo> ..- <onco> | conciodic>

Next Step

- Solicit Comments
 - Keep on improvement, including:
 - control security control IM;
 - attack mitigation control IM;
 - improving information model structure and grammar.

Thanks!

Liang Xia (Frank)