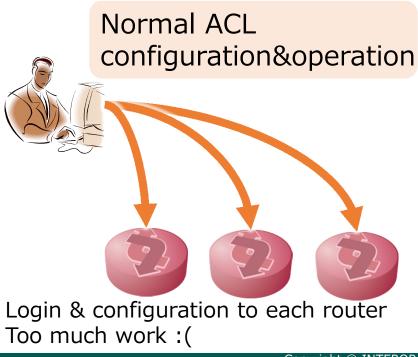
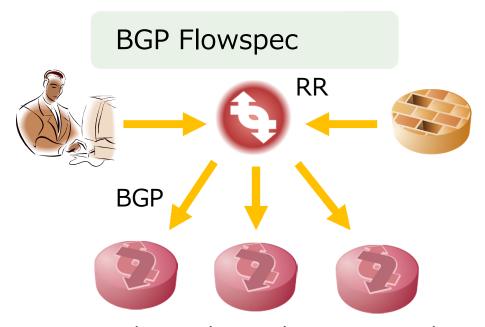
BGP Flowspec Interoperability Test @ Interop Tokyo 2015 ShowNet

ShowNet NOC Team member Shuichi Ohkubo Presenter :Cisco as ShowNet contributor

Copyright © INTEROP TOKYO 2015 ShowNet NOC Tean


Interop Tokyo 2015


- 8 th 12 th June 2015
- The Number of Visitors: 136,341
- Number of Exhibitors:486
- ShowNet: Interoperability test of hot topic (BGPflowspec,VXLAN/EVPN,RPKI,IEEE1588 and so on)

BGP Flowspec(RFC5575)

Distributes ACL configuration to network routers by BGP

Easy to work together with security appliance

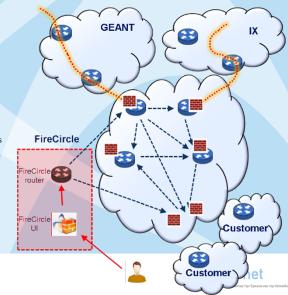
Use case

GRNET

FireCircle Operation Overview

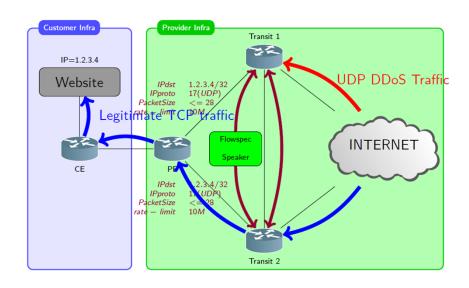
Customer's NOC representative logs into a web tool (shibboleth) and describes flows and actions

Flow destination is validated against the customer's IP space


A dedicated router is configured (netconf) to advertise the route via BGP flowspec

eBGP sessions propagate the n-tuple to GRNET router(s). iBGP further propages the tuples to all GRNET routers.

Dynamic firewall filters are implemented on all routers


Attack is mitigated (dropped, rated-limited) upon entrance

End of attack: Removal via the tool, or auto-expire

NEO TELECOMS

Real life architecture

https://tnc2012.terena.org/core/presentation/41

http://media.frnog.org/FRnOG_18/FRnOG_18-6.pdf

Use case

GRNET NEO TELECOM FireCircle Operation Overview Real life architecture Customer's NOC representative logs into a web tool (shibboleth) and describes flows and actions Flow destination is validated against the customer's IP space

eBGP sessions propagate th n-tuple to GRNET router(s). iBGP further propages the tuples to all GRNET routers.

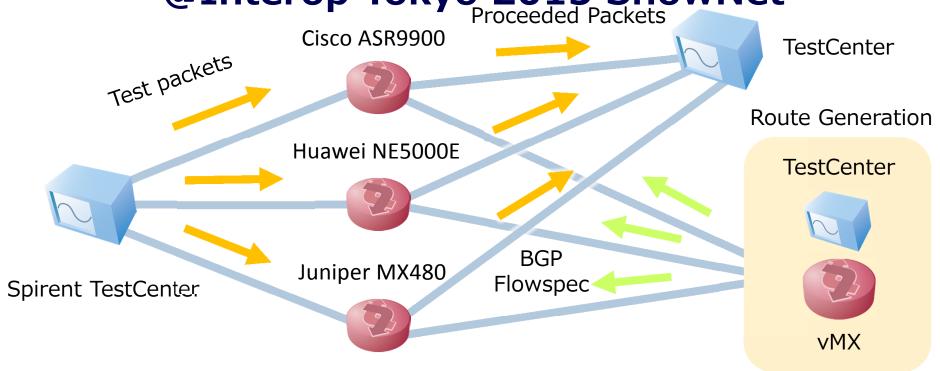
Dynamic firewall filters are implemented on all routers

(netconf) to advertise the ro

via BGP flowspec

Attack is mitigated (dropped, rated-limited) upon entrance

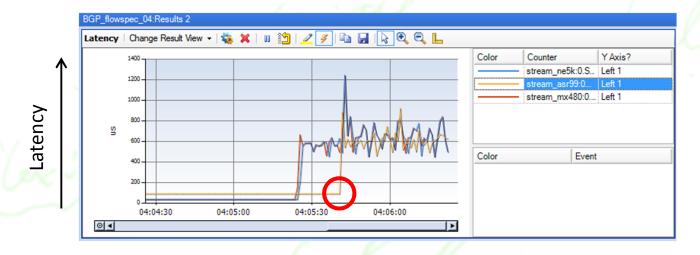
End of attack: Removal via the tool, or auto-expire



https://tnc2012.terena.org/core/presentation/41

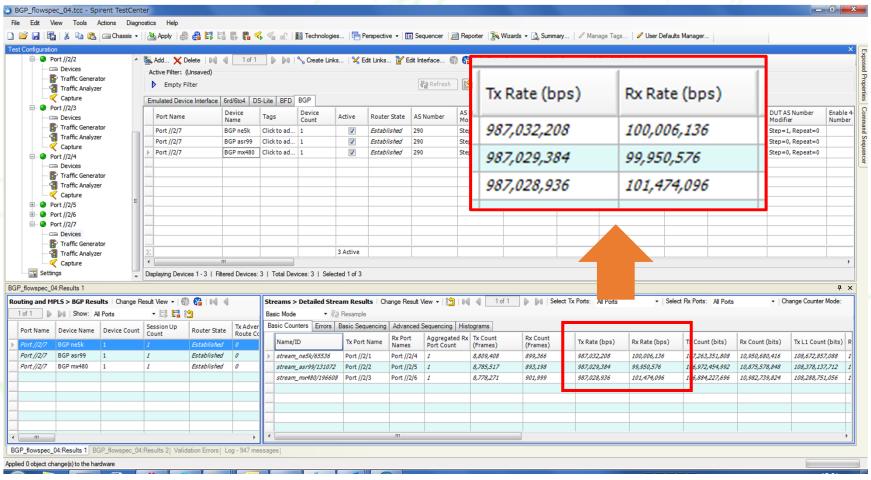
http://media.frnog.org/FRnOG 18/FRnOG 18-6.pdf

Interoperability test topology Tokyo 2015 ShowNet



Test result BGP Flowspec Action rule

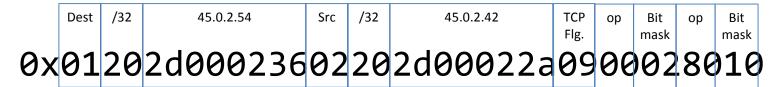
Test Item	NE5000E	ASR9900	MX480
Drop	0	0	0
Rate-limit	0	0	0
VRF Redirect	0	0	0


- Configure rate-limit=0 for Drop action
- Rate-limit: Confirmed by measuring the receiving rate to limit 100Mbps against sending 1Gbps traffic from TestCenter.
- Redirect :confirm interface counter on 3 routers and monitor latency for received packets by Spirent TestCenter

VRF Redirect

- Confirmed by measuring packets latency after redirecting (it's not caused by degradation of forwarding functionality of the router)
- ASR99xx took about 10 sec for processing after Redirection action rule injection. In case of withdrawn, the change was immediately reflected to the forwarding process.
- It depends on BGP Next-hop Scan Timer(configurable)

Rate-limit



Test result by Flow type

Flow type	NE5000E	ASR9900	MX480
Type 1 - Destination Prefix	0	0	0
Type 2 - Source Prefix	0	0	0
Type 3 - IP Protocol	0	0	0
Type 4 - Port	_	_	_
Type 5 - Destination port	0	0	0
Type 6 - Source port	0	0	0
Type 7 - ICMP type	0	0	0
Type 8 - ICMP code	0	0	0
Type 9 - TCP flags	O (Different NLRI)	O (Different NLRI)	0
Type 10 - Packet length	will support in Next release	0	0
Type 11 - DSCP	0	0	0
Type 12 - Fragment	— (Different NLRI)	0	0

Difference in NLRI format Type9. TCP Flags

Juniper Configure syn+ack

0x02 SYN

0x10 ACK

Cisco

	Dest	/32	45.0.2.54	Src	/32	45.0.2.42	TCP Flg.	ор	Bit mask
0x	01	20	2d000236	02	20	2d00022a	0 9	81	12

0x12 ACK-SYN

Difference NLRI format Type9. TCP Flags

ASR receives NLRI but does not work as expected

Cisco provides special firmware during the Interop period , confirmed work as expected (It's already integrated in 5.3.2 as CSCuu79956)

Difference in Match bit Type9. Type12.

<u>Juniper</u>

Cisco, Huawei

NE5000E treat as Invalid m=0

Huawei will support in future (support m=0)

Operation example on ShowNet

Always seen SSH Brute-force attack to ShowNet

Execute filtering by BGP Flowspec

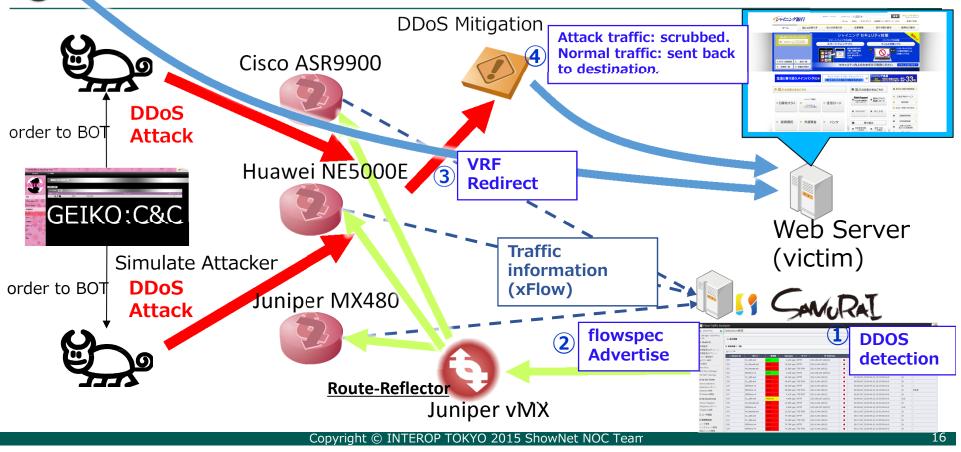
- 1. permit TCP Port 22 from specific server
- 2. drop 45.0.0.0/16 TCP Port 22,23

order of evaluation is important

Need additional command for JUNOS

set routing-options flow term-order standard

http://www.juniper.net/documentation/en US/junos14.2/topics/topic-map/bgp-flow-routes.html


By default, the Junos OS uses the term-ordering algorithm defined in version 6 of the BGP flow specification draft. In Junos OS Release 10.0 and later, you can configure the router to comply with the term-ordering algorithm first defined in version 7 of the BGP flow specification and supported through RFC 5575, Dissemination of Flow Specification Routes.

Best Practice: We recommend that you configure the Junos OS to use the termordering algorithm first defined in version 7 of the BGP flow specification draft. We also recommend that you configure the Junos OS to use the same termordering algorithm on all routing instances configured on a router.

Combination demo with SAMURAL net Combination demo with SAMURA net Combination

Normal Traffic

Summary

- Operator very interested in BGP flowspec
- Need more multi vendor interop report
- We confirmed 4 vendors(Cisco/Juniper/Huawei/Samurai) interoperability
- Implementation date is quite difference, therefore detail information would be needed.
- RFC5575 description sometimes heavy to understand, sample example is helpful. (m=0 is needed??)
- IETF implementation report would be welcomed.

Special Thanks

We appreciate a lot of support

Appendix

Software Version

- Huawei NE5000E 8.65
- Cisco ASR9900 IOS-XR 5.3.1
- Juniper MX480 Junos 15.1R1.8