
RTP Payload Format 
Constraints
draft-‐pthatcher-‐mmusic-‐rid-‐02	  

Adam Roach
Yokohama, Japan

Monday, November 2nd, 2015
1



Overview
•  Defines a new identifier, “RID”
•  In SDP, negotiates constraints to be 

applied to a Source RTP Stream
•  In RTCP (and RTP headers), carries an 

identifier to bind a Source Stream to its 
negotiated constraints

•  Key motivator is constraining and 
identifying multiple encodings in Simulcast

2



Example: Sending two encodings
m=video	  10000	  RTP/SAVPF	  98	  
a=rtpmap:98	  VP8/90000	  
...	  
a=rid:1	  send	  max-‐width=1280;max-‐height=720;max-‐fps=30	  
a=rid:2	  recv	  max-‐width=1280;max-‐height=720;max-‐fps=30	  
a=rid:3	  send	  max-‐width=320;max-‐height=180;max-‐fps=15	  
a=simulcast:send	  rid=1;3	  recv	  rid=2	  

3



Context: We’re in a time crunch
•  The W3C WebRTC working group is putting the 

final touches on the WebRTC 1.0 specification.
•  Anything that we can’t get defined by the time it’s 

ready to be published won’t be included.
•  Unless we have SDP signaling defined to do 

Simulcast when WebRTC is published, WebRTC 
won’t have SDP syntax to use.
–  Yes, this is a tautology.

•  I plan to drive this draft to completion on the list in 
the coming weeks. If you care about the outcome 
of this work, please keep up.

4



Open Issue 1: Declarative SDP?
•  Currently only define semantics for offer/

answer (RFC3264) usage.
•  The RID mechanism is primarily motivated by 

simulcast negotiation cases.
•  Is the utility of being able to declare RIDs 

sufficiently useful that we want to define its 
usage at this time?
– We could always add it later in a different 

document if we decide not to but change our 
minds.

•  Recommendation: offer/answer only for now.

5



Open Issue 2: Definition of Bitrate
•  Currently, we have our own definition, which we 

believe is compatible with (but more complete than) 
TIAS:
–  max-br, for bit rate in bits per second. The restriction 

applies to the media payload only, and does not include 
overhead introduced by other layers (e.g., RTP, UDP, IP, or 
Ethernet). The exact means of keeping within this limit are 
left up to the implementation, and instantaneous 
excursions outside the limit are permissible. For any given 
one-second sliding window, however, the total number of 
bits in the payload portion of RTP SHOULD NOT exceed 
the value specified in "max-br.”

•  Is there something external we should reference?
6



Open Issue 3: Escaping in 
Extension Paramters
•  The parameters on an “a=rid:” line are 

extensible. The syntax for these is:
rid-‐param-‐other	  =	  1*(alpha-‐numeric	  /	  "-‐")	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [	  "="	  param-‐val	  ]	  
param-‐val	  =	  *(	  %x20-‐58	  /	  %x60-‐7E	  )	  
;	  Any	  printable	  character	  except	  semicolon	  

•  If an extension has values that can contain 
semicolons, they need an escaping 
mechanism.

7



Open Issue 3: Escaping in 
Extension Paramters, cont.
•  Note that this is not an issue for any currently defined 

parameters, as they all take numeric values only.
•  Options:

1.  Change extension syntax to only allow numeric values
2.  Define a universal escaping mechanism for all 

extensions to use
3.  Leave this problem for the first extension parameter – if 

any – to define value in a way that might allow a 
semicolon

•  Recommendation: Since the chance of a constraint 
being non-numeric – much less allowing a semicolon 
– seems quite low, #3 seems to make the most 
sense.

8



Background: Negotiating 
Supported Parameters, cont.
•  Where the offer contains specific values, 

the answer can make them more 
constrained; e.g., with an offer of:
a=rid:1	  send	  max-‐width=1024;max-‐height=768	  

•  The answer can tweak them down:
a=rid:1	  recv	  max-‐width=640;max-‐height=480

9



Background: Negotiating 
Supported Parameters
•  Mechanism allows offerer to indicate 

supported parameters without constraining 
them:
a=rid:1	  send	  max-‐width;max-‐height;max-‐goats	  

•  This allows answer to propose constraints 
where the offerer doesn’t:
a=rid:1	  recv	  max-‐width=1024;max-‐height=768

10



Background: Negotiating 
Supported Parameters, cont.
•  If the offer contains a parameter the answerer 

does not understand:
a=rid:1	  recv	  max-‐br=64000;max-‐goats=72	  
a=rid:2	  recv	  max-‐br=64000	  
a=rid:3	  recv	  max-‐br=32000;max-‐goats=16	  
a=rid:4	  recv	  max-‐br=32000	  
a=simulcast:recv	  rid=1,2;3,4	  

•  The answer removes all the rids with 
unknown parameters:
a=rid:2	  send	  max-‐br=64000	  
a=rid:4	  send	  max-‐br=32000	  
a=simulcast:send	  rid=2;4	  

Semicolons and commas 
mean very different things! 

11



Background: Negotiating 
Supported Parameters, cont.
•  This all works, but two specific 

optimizations have been proposed on the 
mailing list.
– One allows for a syntax that makes 

constraints “best effort,” which allows for fewer 
SDP gyrations for situations like the one on 
the previous slide

– The other proposes that unknown parameters 
in the send direction can be safely ignored

12



Proposed Enhancement 1: 
Soft Constraints
•  If an offerer would like to specify a constraint to be 

honored if the remote party understands it and 
ignored if the remote party does not, we add a 
doodad to the syntax to indicate this fact.

•  The previous example collapses to:
a=rid:1	  recv	  max-‐br=64000;max-‐goats?72	  
a=rid:3	  recv	  max-‐br=32000;max-‐goats?16	  
a=simulcast:recv	  rid=1;3	  

•  The answer removes soft constraints it doesn’t 
know, but keeps the associated RIDs:
a=rid:1	  send	  max-‐br=64000	  
a=rid:3	  send	  max-‐br=32000	  
a=simulcast:send	  rid=1;3

13



Proposed Enhancement 2: 
Asymmetric Handling
•  It has been observed that it should not matter if 

the answerer doesn’t understand a constraint on a 
stream that it will receive
–  If the stream is being constrained in a way it doesn’t 

understand, why should it care?
•  Based on this, it would seem to make sense to 

have the answerer simply remove unsupported 
parameters from any received “a=rid:x	  send” 
lines (i.e. for streams the answerer will be 
receiving)
–  This makes the rules different based on whether the 

line is “send” or “recv”

14



Proposed Enhancement 2: 
Asymmetric Handling, example 1
•  Offer:

a=rid:1	  recv	  max-‐br=64000;max-‐goats=72	  
a=rid:2	  recv	  max-‐br=64000	  
a=rid:3	  recv	  max-‐br=32000;max-‐goats=16	  
a=rid:4	  recv	  max-‐br=32000	  
a=simulcast:recv	  rid=1,2;3,4	  

•  Answer (doesn’t know max-goats):
a=rid:2	  send	  max-‐br=64000	  
a=rid:4	  send	  max-‐br=32000	  
a=simulcast:send	  rid=2;4	  
	  	  
	  	  

15



Proposed Enhancement 2: 
Asymmetric Handling, example 2
•  Offer:

a=rid:1	  send	  max-‐br=64000;max-‐goats=72	  
a=rid:2	  send	  max-‐br=64000	  
a=rid:3	  send	  max-‐br=32000;max-‐goats=16	  
a=rid:4	  send	  max-‐br=32000	  
a=simulcast:send	  rid=1,2;3,4	  

•  Answer (doesn’t know max-goats):
a=rid:1	  recv	  max-‐br=64000	  
a=rid:2	  recv	  max-‐br=64000	  
a=rid:3	  recv	  max-‐br=32000	  
a=rid:4	  recv	  max-‐br=32000	  
a=simulcast:recv	  rid=1,2;3,4	  

16


