
Rethinking the
MPTCP handshake

Christoph Paasch <cpaasch@apple.com>

mailto:cpaasch@apple.com

Weaknesses of the
current handshake

Deployment behind layer-4
loadbalancers

Frontend Servers/Proxies

Layer-4 Loadbalancers

Clients

Different servers may choose the same token/key

Token: A Token: A

Deployment behind layer-4
loadbalancers

Different loadbalancers are not aware of the MPTCP-state

Token: A

SYN + JOIN (Token: A)

???

Deployment behind layer-4
loadbalancers

• Deployment behind a loadbalancer is very difficult

➡ Not possible to do classic layer-4 loadbalancer

➡ Thus, requires unicast IP on each server,
implying DNS-based load balancing

➡ Scalability becomes a major concern

Security: Different attacker
models per subflow

• Initial subflow

• Attacker cannot eavesdrop the SYNs

➡ MPTCP sends keys in plaintext

• Additional subflows

• Attacker can eavesdrop the SYNs

➡ Must use HMAC to prove knowledge of keys
without revealing them

Security

• Inconsistent attacker models on the MPTCP
subflows

• Security-sensitive applications will anyways rely on
TLS (or equivalent)

What can we change?
RFC6824-bis will bump the version number

➡ Opportunity to address these challenges!

Rethinking the handshake
MPTCP behind loadbalancers:

• Token should be locally “meaningful”

Security aspects of MPTCP

• Consistent attacker models across all subflows

• Leverage higher-layer security for MPTCP

“Design MPTCP for tomorrow’s protocol stack:
HTTP/2, TLS, MPTCP, IPv6” - O. Bonaventure

Making the token locally
“meaningful”

SYN + MP_CAPABLE (token_A)

SYN/ACK + MP_CAPABLE (token_B)

ACK + MP_CAPABLE (token_A, token_B)

Token announced
explicitly, makes it locally

“meaningful” on the
server-side

✓ Loadbalancers are
supported

Tomorrow’s protocol stack:
HTTP/2, TLS, MPTCP, IPv6

• Do we need a separate key-negotiation mechanism
for MPTCP, when TLS already does it?

• Security provided by TLS is superior to the one
MPTCP can ever provide

• Use a derivate of the TLS-key for MPTCP’s HMAC  
(cfr., draft-paasch-mptcp-ssl & draft-bonaventure-mptcp-tls)

Tentative proposed
handshake

SYN + MP_CAPABLE (token_A, key_selection)

SYN/ACK + MP_CAPABLE (token_B, key_selection)

ACK + MP_CAPABLE (token_A, token_B, key_selection)

key_selection to choose
among a set of key-

negotiation techniques (e.g.,
TLS, PSK, null-Key,…)

Conclusion

• As RFC6824-bis bumps the version number, we
have an opportunity to address a lot of issues

• Loadbalancer-support is key for widespread
deployment

• We can address the security issues as well by
leveraging TLS (is a push for TLS as well)

