
Management information
base for MPTCP

Fabien Duchêne <fabien.duchene@uclouvain.be>
Christoph Paasch <cpaasch@apple.com>

Olivier Bonaventure <olivier.bonaventure@uclouvain.be>

mailto:fabien.duchene@uclouvain.be
mailto:cpaasch@apple.com
mailto:olivier.bonaventure@uclouvain.be

Why ?

A better understanding of MTCP operations:

⇨ Troubleshooting: the MIB covers the different failure
conditions

⇨ Statistics: track the transmission and reception of
data at the MPTCP-layer

Current implementation

The Linux implementation uses 40 counters:
[….]

MPTCP_MIB_JOINSYNTX, /* Sent a SYN + MP_JOIN */

MPTCP_MIB_JOINSYNRX, /* Received a SYN + MP_JOIN */

MPTCP_MIB_JOINSYNACKRX, /* Received a SYN/ACK + MP_JOIN */

MPTCP_MIB_JOINSYNACKMAC, /* HMAC was wrong on SYN/ACK + MP_JOIN */

MPTCP_MIB_JOINACKRX, /* Received an ACK + MP_JOIN */

[….]

Troubleshooting

Troubleshooting

Troubleshooting

Too descriptive ?

The current implementation is very descriptive:

⇨ Confusing if you are not familiar with the
implementation

⇨ Might not apply to other implementations

The right balance

Find the right “balance” without being :

⇨ Too descriptive: too many counters
⇨ Too vague: doesn’t help understanding

The proposed draft contains 20 counters.

Example: the failures

In the draft we splitted the failures scenarios :

⇨ Fallback while “probing”: SYN+ACK without
CAPABLE/JOIN, ACK without DATA_ACK,...

⇨ Fallback when established: DSS-checksum, too
many sgements without DSS mapping,...

⇨ Attacks?: no token, bad HMAC, ….
⇨ Other failures: bad DSS mapping,...

Example: the failures
mptcpFailedToEstablishInitialSubflows OBJECT-TYPE

SYNTAX Counter

UNITS "connections"

MAX-ACCESS read-only

STATUS current

DESCRIPTION

 "The number of initial MPTCP subflows (i.e. the initial SYN

 segment contained the MP_CAPABLE option) that could not

 transition to the ESTABLISHED state from the SYN-RECEIVED

 or SYN-SENT states. The reason being one of:

 - the SYN+ACK didn't contain a MP_CAPABLE

 - the first ACK didn't contain a DATA_ACK or the first

 data-segment did not contain a DSS mapping

 - 4-way handshake didn't complete (SYN+ACK or ACK not received)

 Given these reasons, a connection could not get established or fell

 back to regular TCP. They are most likely due to middleboxes

 interfering with the connection."

::= { mptcp 9 }

Example: the failures
mptcpFallbackEstablishedConnections OBJECT-TYPE

SYNTAX Counter

UNITS "connections"

MAX-ACCESS read-only

STATUS current

DESCRIPTION

 "The number of MPTCP connections that fell back to regular TCP

 while being already ESTABLISHED. The reason being one of:

 - Reception of more than a window worth of data without DSS

 - Reception of a segment with an incorrect DSS checksum

 This happens when a middlebox is interfering with the data

 flow after the connection has been successfully established."

::= { mptcp 11 }

Example: traffic statistics

Currently, 3 counters :

● mptcpReceivedInOrder: The number of segments
that were received in order at the MPTCP (meta) level.

● mptcpReceivedOutOfOrder: The number of
segments that were received out of order at the
MPTCP (meta) level.

● mptcpSentSegments: The number of segments that
were emitted at the MPTCP (meta) level.

Conclusion

● A MIB is useful to give a better understanding
● We need to find the right balance between being:

- Too descriptive
- Too vague

● Ideas ?

