Resource Management in Service Chaining

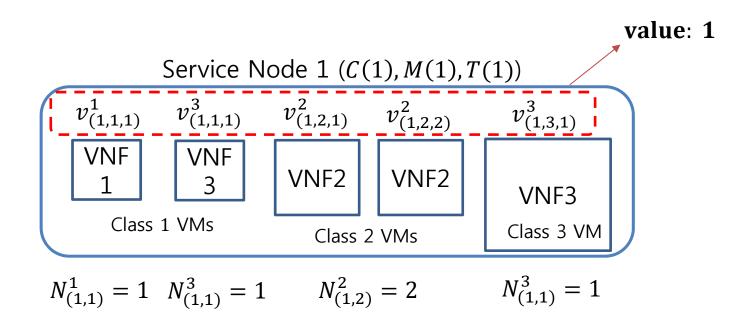
draft-irtf-nfvrg-resource-management-service-chain-02

Seungik Lee (ETRI)
Sangheon Pack (Korea Univ.)
Myung-Ki Shin (ETRI)
EunKyoung Paik (KT)
Rory Browne (Intel)

Recall

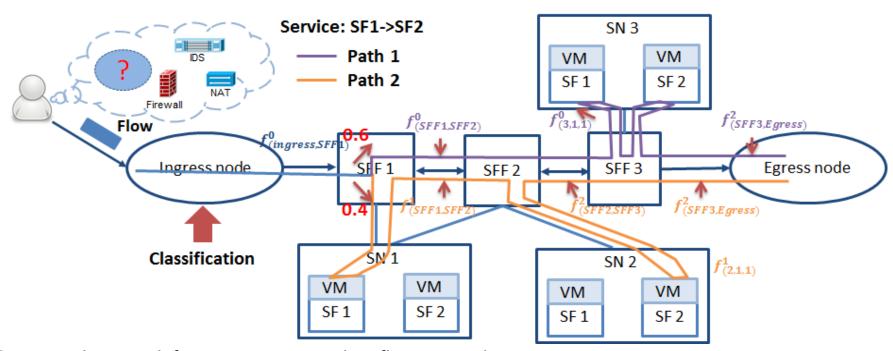
- Problems
 - VNF placement/scheduling in building/maintaining service chains to satisfy given policies
- Use cases
 - path optimization, load balancing, redundancy, traffic optimization, energy efficiency
- Goals
 - build a framework, algorithms, contributions to SFC

Changes since IETF-93


- -02
 - added an evaluation model
 - as a new section #5

Evaluation Model

- Objective
 - determine optimal service chains for the use cases
- Key considerations
 - traffic processing capacity of a VNF instance
 - amount of traffic passed on a VL instance
- System models
 - VNF placement
 - flow distribution ratio
- Objective functions
 - throughput optimization
 - load balancing


VNF Placement

- Indicator function $v_{(i,k,n)}^{s}$ for VNF placement (VPIF)
 - If $v_{(i,k,n)}^s = 1$, function s is installed on nth VM with class k in SN i
 - $-N_{(i,k)}^s = \sum_n v_{(i,k,n)}^s$: the number of VNF instances where function s is installed with class k in SN i

Flow Distribution Ratio

- Traffic flow distribution ratio among NFPs (TFR)
 - $f_{(i,j)}^s$: flow ratio that passes link (i,j) and is already processed by function s
 - The amount of flows assigned to link (i,j) for function s: $F_d^c f_{(i,j)}^s$

 F_d^c : CPU demand for processing the flow (or Flow rate)

Objective Functions

Throughput optimization

$$\max_{(f,v)} \sum_{(i,j) \in E} \sum_{s \in F} f^s_{(i,j)} \, C(i,j) + \sum_{s \in F} \sum_{k \in H} \sum_{i \in V_{SN}} \sum_n f^s_{(i,k,n)} c_k$$
Throughput for VL Throughput for VM (VNF)

Load balancing for VNF

$$\max_{(f,v)} \left(\min_{(i,k,n)} c_k - F_d^c f_{(i,k,n)}^s \right), s \in F, i \in V_{SN}, k \in H$$

Remaining CPU capacity for each VNF instance (i.e., VM)

Load balancing for Virtual Link

$$\max_{(f,v)} \left(\min_{(i,j) \in E} C(i,j) - F_d^c f_{(i,j)}^s \right), s \in F$$

Remaining capacity for each link

Next Steps

- Build a framework and heuristic algorithms for prototyping
- Merging I-Ds for "Policy-based Resource Management"
 - sub-topics:
 - policy, service chains, use cases (reliability), orchestrations
 - relevant I-Ds
 - draft-irtf-nfvrg-nfv-policy-arch
 - draft-krishnan-nfvrg-policy-based-rm-nfviaas
 - draft-irtf-nfvrg-resource-management-service-chain
 - draft-bernini-nfvrg-vnf-orchestration
 - draft-felix-nfvrg-recursive-orchestration
 - and any others?
 - − → needs further discussion