
Applying	 ML	 to	 SDN:	 	
Use-‐Cases	 and	 Ongoing	
Experiments	

Albert	 Cabellos	 (UPC/BarcelonaTech,	 Spain)	
Prof.	 Jean	 Walrand	 (UC	 Berkeley)	
	
albert.cabellos@gmail.com	

IETF	 94	 –	 Yokohama	 –	 NMLRG	 	 –	 November	 2015	

Ongoing	 	
Research	

Thanks	 to:	

•  Shyam	 Parekh	
•  David	 Meyer	
•  Fabio	 Maino,	 Hugo	 Latapie,	 Chris	
Cassar,	 and	 John	 Evans	

•  Sharon	 Barkai	
•  Victor	 Muntés	
•  Albert	 Mestres,	 Eduard	 Alarcón,	 Pere	
Barlet,	 Alberto	 Rodríguez	

2	

MoXvaXon	 and	 Goals	

3	

ScienXfic	 ObjecXves	

•  Apply	 ML	 techniques	 to	 Networking:	
–  Control	 (fast	 dynamics)	

•  E.g,	 rouXng,	 resource	 allocaXon	 (NFV/SFC),	 PCE,	 opXmizaXon,	
congesXon	 detecXon	

– Management	 (slow	 dynamics)	
•  E.g.,	 network	 planning,	 resource	 management,	 load	 esXmaXon	

–  RecommendaXon	 mechanisms	
•  Towards	 self-‐driving	 networks	
•  Out	 of	 the	 scope	
–  Anomaly	 DetecXon	
–  Traffic	 ClassificaXon	

4	

Why	 now?	

•  TradiXonally	 networks	 have	 been	 distributed	
systems	
–  ParXal	 view	 and	 actuaXon	 capabiliXes	

•  Beyond	 programmability,	 SDN	 provides	
centralizaXon:	
–  Full	 view	 of	 the	 network	
–  Full	 actuaXon	 capabiliXes	

•  Data-‐Plane	 nodes	 are	 currently	 equipped	 with	
compuXng	 and	 storage	 capabiliXes	
–  Beyond	 SNMP/Neblow	 monitoring	

5	

Overview	 of	 the	 Architecture	

•  Based	 on	 the	 data	 obtained	 by	 the	 Data	 Collector	 (topology,	
traffic,	 performance	 metrics)	 the	 system	 learns	 and	 builds	 a	
network	 model	

•  The	 network	 model	 is	 used	 to	 provide	 (e.g.,):	
•  OpXmized	 control	
•  Autonomic	 Management	
•  RecommendaXon	

Agent	 Broker	

Network	 Data	
Collector	

SDN/NFV	 Controller/
Orchestrator	

Intelligence	

6	

Use-‐Cases	

7	

Use-‐case	 1:	 	 Overlay	 RouXng	

•  Overlay	 nodes	 use	 an	 unknown	 underlay,	 why?	
–  Underlay	 is	 provided	 by	 another	 company	
–  Underlay	 is	 legacy,	 does	 not	 provide	 monitoring/actuaXon	
capabiliXes	

–  VPN	 over	 different	 providers	 (branch/offices)	
•  Underlay	 offers	 a	 set	 of	 paths	 to	 reach	 the	 desXnaXons	

–  E.g,	 LISP,	 Segment	 RouXng	 or	 any	 other	 mechanism	
•  Problem:	 Traffic	 to	 paths	 allocaXon	 such	 that:	

–  Load-‐balances	 traffic	 over	 the	 underlay	
–  Provides	 delay	 guarantees	
–  Other	 restricXons	 may	 apply	

Learn	 how	 to	 route	
8	

Use-‐case	 1:	 Overlay	 RouXng	

Which	 underlay	
paths	 should	 I	
choose	 to	 send	
traffic?	

Control	 overlay	
rouXng	 to:	
-‐  Load	 Balance	

underlay	
-‐  Delay	 Guarantees	

Learns	 about	 past	
rouXng	 decisions	
and	 the	 resulXng	
underlay	
performance	

SDN	 Controller	

9	

Use-‐case	 1:	 Overlay	 RouXng	 (I)	

•  Typically	 paths	 exhibit	 a	 seasonal	 behaviour	

•  Use	 Xme-‐series	 to	 model	 the	 performance	 of	 a	 path	 over	 Xme	
based	 on	 the	 past	
•  Predict	 future	 (minutes,	 hours)	 performance	

•  Improve	 this	 by	 learning	 correlaXons	 with	 other	 events	
•  Calendar	 Day:	 Holidays,	 etc	
•  Other	 network	 related	 metrics	 (jiler,	 uXlizaXon,	 etc)	

•  Can	 we	 predict	 failures/blackouts?	

10	

Use-‐case	 1:	 Overlay	 RouXng	 (II)	

1	

2	

3	

4	

5	

6	

A	

B	

C	

D	

When	 Router	 A	 sends	
traffic	 over	 path	 2-‐5	
and	 Router	 B	 over	
path	 4-‐6	 I	 see	 an	
increase	 on	 the	 delay	
for	 both	 paths.	 I	
should	 try	 other	 paths.	

SDN	 Controller	

11	

Use-‐case	 2:	 	 NFV/SFC	 Resource	 Management	

! 1!

Sponsoring of a Cisco/BarcelonaTech-UPC PhD Grant for the
Open Overlay Router Project

!

Albert'Cabellos'(acabello@ac.upc.edu)''

UPC'Barcelona'Tech'
Department'of'Computer'Architecture,'Barcelona,'Spain'

Sponsors:'Fabio'Maino'and'Vina'Ermagan'

'
Abstract:' Request! to! fund! a! 95,000! USD! grant! (over! 3! years)! to! sponsor! a!
Cisco/BarcelonaTechEUPC! PhD! program.! The! PhD! student,! while! driving! the! Open! Overlay!

Router! open! source! community,! will! conduct! joint! Cisco/UPC! research! in! the! area! of!

programmable!network!overlays!fostering!the!dissemination,!adoption!and!evolution!of!LISPE

based!SDN!architectures.!'
'
1.G'Summary'and'Project'Objectives'
'

LISPmob.org!is!a!communityEbased!openEsource!project!that!provides!a!fully!featured!

LISP! overlay! [1]! implementation! for! edge! devices:! Android,! OpenWRT! (home! routers)! and!

Linux.!Researchers!have!used!LISPmob!to!test!and!evaluate!new!features!(e.g.,! [2]),!startups!

and!large!companies!have!used!it!to!prototype!and!evaluate!new!useEcases!and!LISPmob!has!

been!used!in!different!demos!both!at!ODL!and!IETF!(see!Section!5).!In!addition!and!as!a!result!

of!this!effort,! the!LISPmob!community!has!also!contributed!to!the!LISP!standardization!(e.g.,!

[3,4]).! Overall,! LISPmob' has' helped' significantly' in' the' dissemination,' adoption' and'

evolution'of'the'LISP'protocol.!!

As! a! consequence! of! this!work,!LISPmob' has' evolved' from' a' LISPGbased' overlay'
implementation'to'an'overlay'router'that'supports'protocols'well'beyond'the'scope'of'

LISP.! At! the! time! of! this!writing! LISPmob! also! supports! VXLANEGPE! and!NETFCONF/YANG!

and! it! has! been! integrated! with! ODL.! Support! for! other! encapsulations! and! controlEplane!

protocols!are!already!under!development.!!

The' main' objective' of' this' research' project' is,' building' on' top' of' LISPmob’s'

community' and' mature' codeGbase,' create' the' Open' Overlay' Router' project' (OOR).!

Beyond!LISP,!OOR!will!support!SFC/NFV!and!SDN!environments,!including!among!others!NSH,!

integration!with!OpenStack,!hardwareEbased!performance,!Pub/SubEbased!controlEplanes!and!

telemetry.!!Further!details!about!the!OOR!architecture!can!be!found!in!Section!2!

!
Figure'1.G!From!LISPmob!to!Open!Overlay!Router!

!

In' order' to' achieve' such' goals' there' are' a' set' of' fundamental' research'

challenges' that' must' be' addressed.! LISP! assumes! hierarchical! state! to! operate! the!

forwarding!elements!(i.e.,!destinationEbased!forwarding)!and!follows!a!pull!approach!for!the!

control!plane.!However!SFC/SDN!scenarios!typically!require!flat!or!quasiEflat!forwarding!state!

(e.g.,!sourceEdestination!or!{SPI,SI}!in!SFC)!and!a!more!flexible!approach!for!the!controlEplane!
(PubESub!and/or!Push).!In!this!context!we!must!address!such!issues!by!researching!controlE

plane!mechanisms! that! fulfill! such! requirements!while!providing! speed!and! scalability.!This!

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

Open
Overlay
Router

Open
Overlay
Router

Open
Overlay
Router

OPEN
OVERLAY
ROUTER

LISP Overlay -!
Mobility (Android) -!

OpenWRT -!
NETCONF/YANG - !

-  SDN/SFC scenarios!
-  L2, L3 underlay!
-  NSH, LISP and VXLAN !
-  Pub/Sub control-plane!
-  ODL and OS integration!
-  Telemetry!

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

OPEN
OVERLAY
ROUTER

Open
Overlay
Router

Open
Overlay
Router

Open
Overlay
Router

OPEN
OVERLAY
ROUTER

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

Server	

V
M	

V
M	

V
M	

•  Assign	 VNFs	 to	 VM	 	
•  Place	 VM	 in	 Server	 	

Learn	 the	 cost	 of	 a	 VNF	 (delay/compuXng)	

Resource	 Management	

12	

Use-‐case	 3:	 	 Load	 EsXmaXon	

•  Predict	 the	 load	 of	 the	 networking	
infrastructure	

•  Long-‐term:	
– EsXmate	 when	 an	 infraestructure	 upgrade	 is	
needed	

– Reduce	 infraestructure	 replacement	 costs	
•  Short-‐term	
– AnXcipate	 congesXon/performance	 degradaXon	
–  Just-‐in-‐Xme	 provisioning	 vs.	 Just-‐in-‐case	 	

Learn	 the	 relaXon	 between	 client/services	
and	 load	 of	 a	 network	 13	

Use-‐case	 3:	 	 Load	 EsXmaXon	

•  Overview	 of	 the	 architecture	
•  System	 is	 trained	 off-‐line	 and	 used	 on/off-‐line	

Network	 Data	
Collector	

Machine	
Learning	

Time	

Lo
ad
	

Current	
Capacity	

Today	

New	 service	 	
deployed	

Features	 Model	

14	

Use-‐case	 3:	 	 Load	 EsXmaXon	

•  ML	 produces	 models	 correlaXng	 a	 set	 of	 relevant	
metrics:	

•  Simple	 (linear)	 esXmates	 about	 the	 trends	 in	 #clients,	
#services	 can	 be	 used	 using	 historical	 data	

#	 of	 clients	

Lo
ad
	

Current	
Capacity	

Today	

#	 of	 services	
Lo
ad
	

Current	
Capacity	

Today	

15	

Use-‐case	 3:	 	 Load	 EsXmaXon	

•  StaXsXcal	 Machine	 Learning	
•  Suggested	 network	 features	 (incomplete	 list):	
– Clients	 (acXve,	 types,	 temporal	 evoluXon…)	
– Services	 (type,	 #	 VMs,	 cross-‐dependency…)	
– Performance	 metrics	 (uXlizaXon	 of	 the	 links,	
latency	 of	 the	 applicaXons,	 jiler…)	

– Fixed	 data:	 Topology,	 etc	
•  The	 accuracy	 of	 the	 model	 can	 be	 tested	 using	
historical	 data	

16	

Use-‐case	 4:	 	 Knowledge	 extracXon	

Network	 Data	
Collector	

Machi
ne	

Learni
ng	

Knowledge	

Network	
Administrator	

OpXmize	 (long-‐term)	

Data	 CorrelaXons	

•  DataàKnolwedge	
•  The	 system	 finds	 correlaXons	 and	 creates	 knowledge	
•  Used	 by	 humans	 to	 opXmize	 the	 infraestructure	

Correlate	 relevant	 network	 events	
17	

Use-‐case	 4:	 	 Knowledge	 extracXon	

•  Examples	 of	 knowledge	

Interface GE1/1 on node N is congested each tuesday at
around 8pm, services X, Y and Z have a large number of
clients

A high number of BGP UPDATES messages are sent,
Interface GE1/2 flappes

Jitter in Interface GE1/2 is high, service X, Y, Z
latency is high, clients for service Y is higher than
the average

18	

Use-‐case	 4:	 	 Knowledge	 extracXon	

•  K-‐means,	 PCA	 and	 CorrelaXon	 Analysis	 techniques	
•  Suggested	 network	 features	 (incomplete	 list):	
–  Clients	 (acXve,	 types,	 temporal	 evoluXon…)	
–  Services	 (type,	 #	 VMs,	 cross-‐dependency…)	
–  Performance	 metrics	 (uXlizaXon	 of	 the	 links,	 latency	
of	 the	 applicaXons,	 jiler…)	

–  Signaling	 events	 (BGP	 messages,	 BGP	 states,	 used	
routes…)	

–  Interface	 stats	 (packets,	 jiler,	 delay,	 …)	
–  Fixed	 data:	 Topology,	 etc	

	
19	

Use-‐case	 4:	 	 Knowledge	 extracXon	

•  Training	 is	 performed	 by	 network	 administrators	
selecXng	 relevant	 events:	
–  Interfaces	 flappes	
–  High	 number	 of	 BGP_UPDATES/WITHRAWL	 over	 a	 period	
of	 Xme	

–  Latency	 above	 average	
•  ML	 finds	 correlaXon	 around	 such	 data	 events	
•  Creates	 knowledge	
	

20	

Experimental	 Results	 (ongoing)	
How	 to	 experimentally	 demonstrate	 such	

use-‐cases	 with	 the	 available	 data?	

21	

Load	 esXmaXon	 of	 a	 VNF	

22	

VNF	 Load	 Experiment	

•  Can	 we	 predict	 the	 load	 of	 a	 VNF?	
•  Predictor:	 Traffic	
•  Predicted:	 CPU	 and	 Delay	
•  VNF	 is	 a	 black	 box	

4

Performance
monitoring tool

Controller /
Traffic destination

Traffic source
pcap file

VM machines

Hypervisor

VNFs

Physical Machine
Internet traffic
CPU Information
OF traffic

Fig. 3. Scheme describing the configuration set up and the different VM
used

To describe the traffic in this particular experiment, we have
used a set of 86 features which describe network, transport and
application level attributes. This set of features includes: num-
ber of packets, bytes transmitted, number of different source
and destination IPs, number of different TCP/UDP source and
destination ports, number of different 5-tuple-defined flows,
number of http/ssl/smpt packets and flows, interarrival times,
etc.

B. Experiment set up
All the pieces required to setup the experiment are deployed

in the same physical machine using different VMs, managed
by the same hypervisor, and interconnected through virtual
networks. Each VNF is installed in a different VM and the
CPU consumption of the complete VM is measured using the
hypervisor performance monitoring tool, that offers the average
CPU consumption in batches of 20 seconds. The traffic is
generated by a second VM and sent through the virtual network
to the VNF, which process it. A third VM is used as the SDN
controller and as traffic destination. The complete diagram is
shown in Fig. 3.

1) Data processing: The traffic is processed off-line in the
same 20 seconds batches that offers the monitoring tool of
the hypervisor to obtain the features that describe each batch.
The CPU consumption is collected for all the traces in this 20
seconds batches. Once the data is collected, it is used to train
the ML algorithm.

2) Machine Learning training: The ML technique chosen is
Artificial Neural Network (ANN) , for which we use the ANN
toolbox implemented in MATLAB [11]. ANNs are inspired by
biological neural networks, in which a “large” set of neurons
cooperate with a limited functionality in order to obtain a
complex task. Particularly, we use one hidden level with five
neurons and one neuron in the output level. The MATLAB
toolbox divides automatically the training set randomly in
three independent sets: training, validation and test, in order
to optimize and evaluate the training process and the training
parameters. The Levenberg-Marquardt algorithm is used in the
training phase and the mean squared error is used as the error
metric.

C. Results and discussion
The first objective of the experiment is to determine the

dependency of the CPU consumption as a function of only a

Fig. 4. Observation points and the model built using two different features
for two different VNF (only the relevant feature is shown)

Fig. 5. Predicted value vs actual value in the three different configurations

subset of features. We choose two relevant features, the number
of packets and the number of flows and we train the model only
with these two features (Fig. 4). For the OVS configured with
firewall rules, we observe that the model is built using only the
number of flows (see Fig. 4 left), and disregards the number
of packets (the predicted CPU consumption is independent
from the number of packets, not shown in the figure). For the
SNORT, the opposite occurs, the CPU consumption is modeled
using only the number of packets and not the number of flows
(see Fig. 4 right). This is mainly because SNORT has to inspect
each packet individually, whereas the OVS has to decide what
to do which each flow. Note that the predicted models are not
linear, and thus they are not easily to model. Moreover, the
model built out of these two features is not good enough since
the prediction error is high. A bigger set of features describing
the traffic must be used to obtain a more accurate model.

On the other hand, when we train the model with all the
traffic features, the CPU consumption of the three different
scenarios can be predicted with a smaller error. Fig. 5 repre-
sents the predicted CPU consumption as a function of the real
CPU consumption. The closer to the diagonal, the better the
prediction is. Since most of the features are heavily correlated,
it is not possible to show the model as a function of some of
them.

Fig. 6 shows the CDF of the error absolute value (deviation)
in percentage. It can be observed that the CPU consumption
can be predicted with less than a 2 % of error in half of the
observations, and less than a 10 % of error in almost all the
observations. The relative error is similar, keeping in mind that
the absolute CPU consumption of the three configurations is
different.

f (traffic_ features) =CPU

23	

VNF	 Load	 Experiment	

• VNFs:	
• OVS	 (switch)	
• OVS	 (fw)	
•  Snort	

•  3-‐layer	 ArXficial	 Neural	 Network	 	
–  10-‐node	 hidden	 layer	
–  70	 input	 features	

•  Tested	 with	 real-‐world	 traffic	
•  70	 traffic-‐features	

24	

VNF	 Load	 Experiment:	 Traffic	 Features	
numPackets:
totalBytes:
avgInterAT:
stdInterAT:
avgLength:
stdLength:
ipSrc:
ipDst:
ipSrcDst:
ipv4:
ipv6:
icmp4:
icmp6:
otherL3:
ipMaskSrc[30]
….

•  70	 traffic	 features	
•  Can	 be	 computed	 at	 line-‐
speed	

•  Typically	 available	 by	
default	 in	 many	
networking	 equipment	

	

25	

Is	 the	 model	 trivial/linear?	
4

Fig. 3. Scheme describing the configuration set up and the different VM
used

To describe the traffic in this particular experiment, we have
used a set of 86 features which describe network, transport and
application level attributes. This set of features includes: num-
ber of packets, bytes transmitted, number of different source
and destination IPs, number of different TCP/UDP source and
destination ports, number of different 5-tuple-defined flows,
number of http/ssl/smpt packets and flows, interarrival times,
etc.

B. Experiment set up
All the pieces required to setup the experiment are deployed

in the same physical machine using different VMs, managed
by the same hypervisor, and interconnected through virtual
networks. Each VNF is installed in a different VM and the
CPU consumption of the complete VM is measured using the
hypervisor performance monitoring tool, that offers the average
CPU consumption in batches of 20 seconds. The traffic is
generated by a second VM and sent through the virtual network
to the VNF, which process it. A third VM is used as the SDN
controller and as traffic destination. The complete diagram is
shown in Fig. 3.

1) Data processing: The traffic is processed off-line in the
same 20 seconds batches that offers the monitoring tool of
the hypervisor to obtain the features that describe each batch.
The CPU consumption is collected for all the traces in this 20
seconds batches. Once the data is collected, it is used to train
the ML algorithm.

2) Machine Learning training: The ML technique chosen is
Artificial Neural Network (ANN) , for which we use the ANN
toolbox implemented in MATLAB [11]. ANNs are inspired by
biological neural networks, in which a “large” set of neurons
cooperate with a limited functionality in order to obtain a
complex task. Particularly, we use one hidden level with five
neurons and one neuron in the output level. The MATLAB
toolbox divides automatically the training set randomly in
three independent sets: training, validation and test, in order
to optimize and evaluate the training process and the training
parameters. The Levenberg-Marquardt algorithm is used in the
training phase and the mean squared error is used as the error
metric.

C. Results and discussion
The first objective of the experiment is to determine the

dependency of the CPU consumption as a function of only a

3 4 5 6 7

x 104

80

100

120

140

160

180

200

220

240

260

280

Num Packets

C
P

U
 c

on
su

m
pt

io
n

Snort

Fig. 4. Observation points and the model built using two different features
for two different VNF (only the relevant feature is shown)

Fig. 5. Predicted value vs actual value in the three different configurations

subset of features. We choose two relevant features, the number
of packets and the number of flows and we train the model only
with these two features (Fig. 4). For the OVS configured with
firewall rules, we observe that the model is built using only the
number of flows (see Fig. 4 left), and disregards the number
of packets (the predicted CPU consumption is independent
from the number of packets, not shown in the figure). For the
SNORT, the opposite occurs, the CPU consumption is modeled
using only the number of packets and not the number of flows
(see Fig. 4 right). This is mainly because SNORT has to inspect
each packet individually, whereas the OVS has to decide what
to do which each flow. Note that the predicted models are not
linear, and thus they are not easily to model. Moreover, the
model built out of these two features is not good enough since
the prediction error is high. A bigger set of features describing
the traffic must be used to obtain a more accurate model.

On the other hand, when we train the model with all the
traffic features, the CPU consumption of the three different
scenarios can be predicted with a smaller error. Fig. 5 repre-
sents the predicted CPU consumption as a function of the real
CPU consumption. The closer to the diagonal, the better the
prediction is. Since most of the features are heavily correlated,
it is not possible to show the model as a function of some of
them.

Fig. 6 shows the CDF of the error absolute value (deviation)
in percentage. It can be observed that the CPU consumption
can be predicted with less than a 2 % of error in half of the
observations, and less than a 10 % of error in almost all the
observations. The relative error is similar, keeping in mind that
the absolute CPU consumption of the three configurations is
different.

26	

Error	 of	 the	 model	 <	 5%	
5

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error [%]

Pr
ob

ab
ilit

y

Firewall
OVS+controller
Snort

Fig. 6. Cumulative distribution function of the error as a function of the
percentual error

0 10 20 30 40 50 60 70 80 90
5

10

15

20

25

sorted features

av
er

ag
ee

 e
rro

r [
%

]

fw
ovs
snort

Fig. 7. Sorted training error of single features

During the training process, the ML algorithm learns and
discover the relationship between the features and the CPU
consumption and is able to detect which features are more
relevant. Some features may be more relevant, less relevant or
completely irrelevant depending on the specific VNF and/or
have a different relevance for a different VNFs. Fig. 7 shows
the average error (in percentage, normalized by the absolute
CPU consumption) when the ML algorithm is applied into
single features. The features are sorted by the error, from the
lower error in the prediction to the higher error, to facilitate
the analysis of the graphic. We can observe that while a
small group of features can be used to predict the CPU
consumption with a small error, the vast majority present a
certain correlation but with a bigger error, and some of them
cannot be used to predict the CPU consumption at all.

Note that in this particular experiment, similar results can
be obtained with simpler regression models, such as multiple
linear regression (using higher degree polynomials if needed).
However, the main advantages of ML is that it can easily
incorporate not linear behaviors in the same ML model. For
example, a single training can model the CPU consumption of
these three configurations, by only adding one feature indicat-
ing each configuration. Some of the features that describe the
topology and the configuration of the network in more complex

scenarios may not be appropriate for simpler lineal models.
From the results obtained in the experiment, we conclude that
it is feasible to use a ML-driven model to predict network
performance metrics.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented a cognizant model of the
network by taking advantage of the centralization offered in
SDN. The main idea is to build a model by using ML tech-
niques from the network and traffic parameters (features). This
model have interesting applications in the network control,
management and orchestration. We have studied the viability
of this concept by applying a simplification of this model in
certain network elements with real traffic. We have demon-
strated that this model work for this simple network, we have
shown that a performance metric can be predicted with good
accuracy. With these results, we envision that the proposed
network model can be built in more complex networks and to
predict other performance metrics.

To be able to build the complete model of the network and
to predict the behavior in the future, there is still work to be
done. It is necessary to find a concise way to describe the
relevant information of the network and the traffic, as well
as it is needed more precise traffic predictions to be able to
predict certain traffic fluctuations. However the main objective
of this paper is to show the potential offered by SDN, and
the great opportunities to optimize the networks that this new
research area offers.

ACKNOWLEDGMENT

This work has been partially supported by the FI-AGAUR
grant of the Catalan Government.

REFERENCES

[1] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking : Past , Present ,
and Future of Programmable Networks,” IEEE Communications Surveys
and Tutorials, vol. 16, pp. 1617–1634, 2014.

[2] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization.pdf,” Computer Networks, vol. 54, no. 5, pp. 862–876,
2010.

[3] R. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science \& Business
Media, 2013.

[4] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking - HotSDN ’13, p. 43, 2013.

[5] J. W. Jiang, T. Lan, H. Sangtae, M. Chen, and M. Chiang, “Joint VM
Placement and Routing for Data Center Trafc Engineering,” INFOCOM,
Proceedings IEEE, pp. 2876–2880, 2012.

[6] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994–12 000, 2009.

[7] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[8] Open-source. (2015) Open vSwitch. [Online]. Available:
http://openvswitch.org

•  VNFs	 depend	 on	
different	 features	
according	 to:	
– Type	 of	 VNF	
– ConfiguraXon	 of	 VNF	

•  Offline	 learning	 also	
possible	 for	 many	
scenarios	

	
27	

Overlay	 RouXng	 (ongoing)	

28	

Overlay	 RouXng	

Which	 underlay	
paths	 should	 I	
choose	 to	 send	
traffic?	

I	 learnt	 how	 to	
route!	 Even	 if	 I	 don´t	
seen	 the	 underlay!	

Let	 me	 see	 what	
happens	 when	 I	
send	 traffic	 through	
here…	

29	

30	

•  There	 are	 196	 pairs	 of	 nodes	 (N2)	
–  Random	 uniformly	 distributed	 traffic	

•  Simple	 Internet2	 topology	 (14	 nodes,	 22	 links)	
•  Five	 rouXng	 opXons	 among	 nodes	

•  1:	 Shortest	 path	 	
•  2:	 Equally	 distributed	 among	 possible	 paths*	
•  3:	 2/3	 shortest	 path	 +	 1/3	 2nd	 shortest	 path	
•  4:	 4/5	 shortest	 path	 +	 1/5	 2nd	 shortest	 path	
•  5:	 1/2	 1st	 path	 +	 1/3	 2nd	 path	 +	 1/6	 3rd	 path	

–  Randomly	 chosen	 	

•  Train	 the	 system	 with	 10000	 random	 samples	
*:	 limited	 to	 10	 paths	 	 and	
delay	 <=	 2·∙minDelay	

Network	 Model	 (I)	

Network	 Model	 (II)	

31	

MODEL	
Traffic	 (N2)	

RouXng	 (N2)	

UXlizaXon	 (E)	

Delay	 (N2)	

Topology	 is	 hidden	

Results	 (ongoing)	

32	

•  ArXficial	 Neural	 Network	 (1	 hidden	 layer)	
–  196	 input	 features	
–  200	 nodes	 in	 the	 hidden	 layer	
–  Topology	 is	 hidden	 for	 ANN	
–  Results	 only	 for	 one	 traffic	 policy	

	

Conclusions	

•  Use-‐cases:	 where	 tradiXonal	 models	 are	
impracXcal:	
– ComputaXonally	 too	 expensive	
– Hidden	 variables	
– Not	 accurate	

•  Paradigm	 shi|	 on	 how	 we	 manage	 and	 run	 our	
networks	
–  Unprecedented	 opXmizaXon	
–  Lower	 management	 costs	
–  Towards	 self-‐driving	 networks	

	
33	

