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MoXvaXon	  and	  Goals	  
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ScienXfic	  ObjecXves	  

•  Apply	  ML	  techniques	  to	  Networking:	  
–  Control	  (fast	  dynamics)	  

•  E.g,	  rouXng,	  resource	  allocaXon	  (NFV/SFC),	  PCE,	  opXmizaXon,	  
congesXon	  detecXon	  

– Management	  (slow	  dynamics)	  
•  E.g.,	  network	  planning,	  resource	  management,	  load	  esXmaXon	  

–  RecommendaXon	  mechanisms	  
•  Towards	  self-‐driving	  networks	  
•  Out	  of	  the	  scope	  
–  Anomaly	  DetecXon	  
–  Traffic	  ClassificaXon	  
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Why	  now?	  

•  TradiXonally	  networks	  have	  been	  distributed	  
systems	  
–  ParXal	  view	  and	  actuaXon	  capabiliXes	  

•  Beyond	  programmability,	  SDN	  provides	  
centralizaXon:	  
–  Full	  view	  of	  the	  network	  
–  Full	  actuaXon	  capabiliXes	  

•  Data-‐Plane	  nodes	  are	  currently	  equipped	  with	  
compuXng	  and	  storage	  capabiliXes	  
–  Beyond	  SNMP/Neblow	  monitoring	  
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Overview	  of	  the	  Architecture	  

•  Based	  on	  the	  data	  obtained	  by	  the	  Data	  Collector	  (topology,	  
traffic,	  performance	  metrics)	  the	  system	  learns	  and	  builds	  a	  
network	  model	  

•  The	  network	  model	  is	  used	  to	  provide	  (e.g.,):	  
•  OpXmized	  control	  
•  Autonomic	  Management	  
•  RecommendaXon	  

Agent	  Broker	  

Network	  Data	  
Collector	  

SDN/NFV	  Controller/
Orchestrator	  

Intelligence	  
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Use-‐Cases	  
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Use-‐case	  1:	  	  Overlay	  RouXng	  

•  Overlay	  nodes	  use	  an	  unknown	  underlay,	  why?	  
–  Underlay	  is	  provided	  by	  another	  company	  
–  Underlay	  is	  legacy,	  does	  not	  provide	  monitoring/actuaXon	  
capabiliXes	  

–  VPN	  over	  different	  providers	  (branch/offices)	  
•  Underlay	  offers	  a	  set	  of	  paths	  to	  reach	  the	  desXnaXons	  

–  E.g,	  LISP,	  Segment	  RouXng	  or	  any	  other	  mechanism	  
•  Problem:	  Traffic	  to	  paths	  allocaXon	  such	  that:	  

–  Load-‐balances	  traffic	  over	  the	  underlay	  
–  Provides	  delay	  guarantees	  
–  Other	  restricXons	  may	  apply	  

Learn	  how	  to	  route	  
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Use-‐case	  1:	  Overlay	  RouXng	  

Which	  underlay	  
paths	  should	  I	  
choose	  to	  send	  
traffic?	  

Control	  overlay	  
rouXng	  to:	  
-‐  Load	  Balance	  

underlay	  
-‐  Delay	  Guarantees	  

Learns	  about	  past	  
rouXng	  decisions	  
and	  the	  resulXng	  
underlay	  
performance	  

SDN	  Controller	  

9	  



Use-‐case	  1:	  Overlay	  RouXng	  (I)	  

•  Typically	  paths	  exhibit	  a	  seasonal	  behaviour	  

•  Use	  Xme-‐series	  to	  model	  the	  performance	  of	  a	  path	  over	  Xme	  
based	  on	  the	  past	  
•  Predict	  future	  (minutes,	  hours)	  performance	  

•  Improve	  this	  by	  learning	  correlaXons	  with	  other	  events	  
•  Calendar	  Day:	  Holidays,	  etc	  
•  Other	  network	  related	  metrics	  (jiler,	  uXlizaXon,	  etc)	  

•  Can	  we	  predict	  failures/blackouts?	  
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Use-‐case	  1:	  Overlay	  RouXng	  (II)	  

1	  

2	  

3	  

4	  

5	  

6	  

A	  

B	  

C	  

D	  

When	  Router	  A	  sends	  
traffic	  over	  path	  2-‐5	  
and	  Router	  B	  over	  
path	  4-‐6	  I	  see	  an	  
increase	  on	  the	  delay	  
for	  both	  paths.	  I	  
should	  try	  other	  paths.	  

SDN	  Controller	  
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Use-‐case	  2:	  	  NFV/SFC	  Resource	  Management	  

! 1!

Sponsoring of a Cisco/BarcelonaTech-UPC PhD Grant for the 
Open Overlay Router Project 

!

Albert'Cabellos'(acabello@ac.upc.edu)''

UPC'Barcelona'Tech'
Department'of'Computer'Architecture,'Barcelona,'Spain'

Sponsors:'Fabio'Maino'and'Vina'Ermagan'

'
Abstract:' Request! to! fund! a! 95,000! USD! grant! (over! 3! years)! to! sponsor! a!
Cisco/BarcelonaTechEUPC! PhD! program.! The! PhD! student,! while! driving! the! Open! Overlay!

Router! open! source! community,! will! conduct! joint! Cisco/UPC! research! in! the! area! of!

programmable!network!overlays!fostering!the!dissemination,!adoption!and!evolution!of!LISPE

based!SDN!architectures.!'
'
1.G'Summary'and'Project'Objectives'
'

LISPmob.org!is!a!communityEbased!openEsource!project!that!provides!a!fully!featured!

LISP! overlay! [1]! implementation! for! edge! devices:! Android,! OpenWRT! (home! routers)! and!

Linux.!Researchers!have!used!LISPmob!to!test!and!evaluate!new!features!(e.g.,! [2]),!startups!

and!large!companies!have!used!it!to!prototype!and!evaluate!new!useEcases!and!LISPmob!has!

been!used!in!different!demos!both!at!ODL!and!IETF!(see!Section!5).!In!addition!and!as!a!result!

of!this!effort,! the!LISPmob!community!has!also!contributed!to!the!LISP!standardization!(e.g.,!

[3,4]).! Overall,! LISPmob' has' helped' significantly' in' the' dissemination,' adoption' and'

evolution'of'the'LISP'protocol.!!

As! a! consequence! of! this!work,!LISPmob' has' evolved' from' a' LISPGbased' overlay'
implementation'to'an'overlay'router'that'supports'protocols'well'beyond'the'scope'of'

LISP.! At! the! time! of! this!writing! LISPmob! also! supports! VXLANEGPE! and!NETFCONF/YANG!

and! it! has! been! integrated! with! ODL.! Support! for! other! encapsulations! and! controlEplane!

protocols!are!already!under!development.!!

The' main' objective' of' this' research' project' is,' building' on' top' of' LISPmob’s'

community' and' mature' codeGbase,' create' the' Open' Overlay' Router' project' (OOR).!

Beyond!LISP,!OOR!will!support!SFC/NFV!and!SDN!environments,!including!among!others!NSH,!

integration!with!OpenStack,!hardwareEbased!performance,!Pub/SubEbased!controlEplanes!and!

telemetry.!!Further!details!about!the!OOR!architecture!can!be!found!in!Section!2!

!
Figure'1.G!From!LISPmob!to!Open!Overlay!Router!

!

In' order' to' achieve' such' goals' there' are' a' set' of' fundamental' research'

challenges' that' must' be' addressed.! LISP! assumes! hierarchical! state! to! operate! the!

forwarding!elements!(i.e.,!destinationEbased!forwarding)!and!follows!a!pull!approach!for!the!

control!plane.!However!SFC/SDN!scenarios!typically!require!flat!or!quasiEflat!forwarding!state!

(e.g.,!sourceEdestination!or!{SPI,SI}!in!SFC)!and!a!more!flexible!approach!for!the!controlEplane!
(PubESub!and/or!Push).!In!this!context!we!must!address!such!issues!by!researching!controlE

plane!mechanisms! that! fulfill! such! requirements!while!providing! speed!and! scalability.!This!
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•  Assign	  VNFs	  to	  VM	  	  
•  Place	  VM	  in	  Server	  	  

Learn	  the	  cost	  of	  a	  VNF	  (delay/compuXng)	  

Resource	  Management	  
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Use-‐case	  3:	  	  Load	  EsXmaXon	  

•  Predict	  the	  load	  of	  the	  networking	  
infrastructure	  

•  Long-‐term:	  
– EsXmate	  when	  an	  infraestructure	  upgrade	  is	  
needed	  

– Reduce	  infraestructure	  replacement	  costs	  
•  Short-‐term	  
– AnXcipate	  congesXon/performance	  degradaXon	  
–  Just-‐in-‐Xme	  provisioning	  vs.	  Just-‐in-‐case	  	  

Learn	  the	  relaXon	  between	  client/services	  
and	  load	  of	  a	  network	   13	  



Use-‐case	  3:	  	  Load	  EsXmaXon	  

•  Overview	  of	  the	  architecture	  
•  System	  is	  trained	  off-‐line	  and	  used	  on/off-‐line	  

Network	  Data	  
Collector	  

Machine	  
Learning	  

Time	  

Lo
ad
	  

Current	  
Capacity	  

Today	  

New	  service	  	  
deployed	  

Features	   Model	  
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Use-‐case	  3:	  	  Load	  EsXmaXon	  

•  ML	  produces	  models	  correlaXng	  a	  set	  of	  relevant	  
metrics:	  

•  Simple	  (linear)	  esXmates	  about	  the	  trends	  in	  #clients,	  
#services	  can	  be	  used	  using	  historical	  data	  

#	  of	  clients	  

Lo
ad
	  

Current	  
Capacity	  

Today	  

#	  of	  services	  
Lo
ad
	  

Current	  
Capacity	  

Today	  
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Use-‐case	  3:	  	  Load	  EsXmaXon	  

•  StaXsXcal	  Machine	  Learning	  
•  Suggested	  network	  features	  (incomplete	  list):	  
– Clients	  (acXve,	  types,	  temporal	  evoluXon…)	  
– Services	  (type,	  #	  VMs,	  cross-‐dependency…)	  
– Performance	  metrics	  (uXlizaXon	  of	  the	  links,	  
latency	  of	  the	  applicaXons,	  jiler…)	  

– Fixed	  data:	  Topology,	  etc	  
•  The	  accuracy	  of	  the	  model	  can	  be	  tested	  using	  
historical	  data	  
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Use-‐case	  4:	  	  Knowledge	  extracXon	  

Network	  Data	  
Collector	  

Machi
ne	  

Learni
ng	  

Knowledge	  

Network	  
Administrator	  

OpXmize	  (long-‐term)	  

Data	   CorrelaXons	  

•  DataàKnolwedge	  
•  The	  system	  finds	  correlaXons	  and	  creates	  knowledge	  
•  Used	  by	  humans	  to	  opXmize	  the	  infraestructure	  

Correlate	  relevant	  network	  events	  
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Use-‐case	  4:	  	  Knowledge	  extracXon	  

•  Examples	  of	  knowledge	  

Interface GE1/1 on node N is congested each tuesday at 
around 8pm, services X, Y and Z have a large number of 
clients  

A high number of BGP UPDATES messages are sent, 
Interface GE1/2 flappes 

Jitter in Interface GE1/2 is high, service X, Y, Z 
latency is high, clients for service Y is higher than 
the average 
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Use-‐case	  4:	  	  Knowledge	  extracXon	  

•  K-‐means,	  PCA	  and	  CorrelaXon	  Analysis	  techniques	  
•  Suggested	  network	  features	  (incomplete	  list):	  
–  Clients	  (acXve,	  types,	  temporal	  evoluXon…)	  
–  Services	  (type,	  #	  VMs,	  cross-‐dependency…)	  
–  Performance	  metrics	  (uXlizaXon	  of	  the	  links,	  latency	  
of	  the	  applicaXons,	  jiler…)	  

–  Signaling	  events	  (BGP	  messages,	  BGP	  states,	  used	  
routes…)	  

–  Interface	  stats	  (packets,	  jiler,	  delay,	  …)	  
–  Fixed	  data:	  Topology,	  etc	  
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Use-‐case	  4:	  	  Knowledge	  extracXon	  

•  Training	  is	  performed	  by	  network	  administrators	  
selecXng	  relevant	  events:	  
–  Interfaces	  flappes	  
–  High	  number	  of	  BGP_UPDATES/WITHRAWL	  over	  a	  period	  
of	  Xme	  

–  Latency	  above	  average	  
•  ML	  finds	  correlaXon	  around	  such	  data	  events	  
•  Creates	  knowledge	  
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Experimental	  Results	  (ongoing)	  
How	  to	  experimentally	  demonstrate	  such	  

use-‐cases	  with	  the	  available	  data?	  
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Load	  esXmaXon	  of	  a	  VNF	  
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VNF	  Load	  Experiment	  

•  Can	  we	  predict	  the	  load	  of	  a	  VNF?	  
•  Predictor:	  Traffic	  
•  Predicted:	  CPU	  and	  Delay	  
•  VNF	  is	  a	  black	  box	  

4

Performance 
monitoring tool

Controller / 
Traffic destination

Traffic source
pcap file

VM machines

Hypervisor

VNFs

Physical Machine
Internet traffic
CPU Information
OF traffic

Fig. 3. Scheme describing the configuration set up and the different VM
used

To describe the traffic in this particular experiment, we have
used a set of 86 features which describe network, transport and
application level attributes. This set of features includes: num-
ber of packets, bytes transmitted, number of different source
and destination IPs, number of different TCP/UDP source and
destination ports, number of different 5-tuple-defined flows,
number of http/ssl/smpt packets and flows, interarrival times,
etc.

B. Experiment set up
All the pieces required to setup the experiment are deployed

in the same physical machine using different VMs, managed
by the same hypervisor, and interconnected through virtual
networks. Each VNF is installed in a different VM and the
CPU consumption of the complete VM is measured using the
hypervisor performance monitoring tool, that offers the average
CPU consumption in batches of 20 seconds. The traffic is
generated by a second VM and sent through the virtual network
to the VNF, which process it. A third VM is used as the SDN
controller and as traffic destination. The complete diagram is
shown in Fig. 3.

1) Data processing: The traffic is processed off-line in the
same 20 seconds batches that offers the monitoring tool of
the hypervisor to obtain the features that describe each batch.
The CPU consumption is collected for all the traces in this 20
seconds batches. Once the data is collected, it is used to train
the ML algorithm.

2) Machine Learning training: The ML technique chosen is
Artificial Neural Network (ANN) , for which we use the ANN
toolbox implemented in MATLAB [11]. ANNs are inspired by
biological neural networks, in which a “large” set of neurons
cooperate with a limited functionality in order to obtain a
complex task. Particularly, we use one hidden level with five
neurons and one neuron in the output level. The MATLAB
toolbox divides automatically the training set randomly in
three independent sets: training, validation and test, in order
to optimize and evaluate the training process and the training
parameters. The Levenberg-Marquardt algorithm is used in the
training phase and the mean squared error is used as the error
metric.

C. Results and discussion
The first objective of the experiment is to determine the

dependency of the CPU consumption as a function of only a

Fig. 4. Observation points and the model built using two different features
for two different VNF (only the relevant feature is shown)

Fig. 5. Predicted value vs actual value in the three different configurations

subset of features. We choose two relevant features, the number
of packets and the number of flows and we train the model only
with these two features (Fig. 4). For the OVS configured with
firewall rules, we observe that the model is built using only the
number of flows (see Fig. 4 left), and disregards the number
of packets (the predicted CPU consumption is independent
from the number of packets, not shown in the figure). For the
SNORT, the opposite occurs, the CPU consumption is modeled
using only the number of packets and not the number of flows
(see Fig. 4 right). This is mainly because SNORT has to inspect
each packet individually, whereas the OVS has to decide what
to do which each flow. Note that the predicted models are not
linear, and thus they are not easily to model. Moreover, the
model built out of these two features is not good enough since
the prediction error is high. A bigger set of features describing
the traffic must be used to obtain a more accurate model.

On the other hand, when we train the model with all the
traffic features, the CPU consumption of the three different
scenarios can be predicted with a smaller error. Fig. 5 repre-
sents the predicted CPU consumption as a function of the real
CPU consumption. The closer to the diagonal, the better the
prediction is. Since most of the features are heavily correlated,
it is not possible to show the model as a function of some of
them.

Fig. 6 shows the CDF of the error absolute value (deviation)
in percentage. It can be observed that the CPU consumption
can be predicted with less than a 2 % of error in half of the
observations, and less than a 10 % of error in almost all the
observations. The relative error is similar, keeping in mind that
the absolute CPU consumption of the three configurations is
different.

f (traffic_ features) =CPU
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VNF	  Load	  Experiment	  

• VNFs:	  
• OVS	  (switch)	  
• OVS	  (fw)	  
•  Snort	  

•  3-‐layer	  ArXficial	  Neural	  Network	  	  
–  10-‐node	  hidden	  layer	  
–  70	  input	  features	  

•  Tested	  with	  real-‐world	  traffic	  
•  70	  traffic-‐features	  
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VNF	  Load	  Experiment:	  Traffic	  Features	  
numPackets:  
totalBytes: 
avgInterAT:  
stdInterAT:  
avgLength: 
stdLength:  
ipSrc: 
ipDst:  
ipSrcDst:  
ipv4:  
ipv6:  
icmp4:  
icmp6:  
otherL3: 
ipMaskSrc[30] 
…. 

•  70	  traffic	  features	  
•  Can	  be	  computed	  at	  line-‐
speed	  

•  Typically	  available	  by	  
default	  in	  many	  
networking	  equipment	  
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Is	  the	  model	  trivial/linear?	  
4

Fig. 3. Scheme describing the configuration set up and the different VM
used

To describe the traffic in this particular experiment, we have
used a set of 86 features which describe network, transport and
application level attributes. This set of features includes: num-
ber of packets, bytes transmitted, number of different source
and destination IPs, number of different TCP/UDP source and
destination ports, number of different 5-tuple-defined flows,
number of http/ssl/smpt packets and flows, interarrival times,
etc.

B. Experiment set up
All the pieces required to setup the experiment are deployed

in the same physical machine using different VMs, managed
by the same hypervisor, and interconnected through virtual
networks. Each VNF is installed in a different VM and the
CPU consumption of the complete VM is measured using the
hypervisor performance monitoring tool, that offers the average
CPU consumption in batches of 20 seconds. The traffic is
generated by a second VM and sent through the virtual network
to the VNF, which process it. A third VM is used as the SDN
controller and as traffic destination. The complete diagram is
shown in Fig. 3.

1) Data processing: The traffic is processed off-line in the
same 20 seconds batches that offers the monitoring tool of
the hypervisor to obtain the features that describe each batch.
The CPU consumption is collected for all the traces in this 20
seconds batches. Once the data is collected, it is used to train
the ML algorithm.

2) Machine Learning training: The ML technique chosen is
Artificial Neural Network (ANN) , for which we use the ANN
toolbox implemented in MATLAB [11]. ANNs are inspired by
biological neural networks, in which a “large” set of neurons
cooperate with a limited functionality in order to obtain a
complex task. Particularly, we use one hidden level with five
neurons and one neuron in the output level. The MATLAB
toolbox divides automatically the training set randomly in
three independent sets: training, validation and test, in order
to optimize and evaluate the training process and the training
parameters. The Levenberg-Marquardt algorithm is used in the
training phase and the mean squared error is used as the error
metric.

C. Results and discussion
The first objective of the experiment is to determine the

dependency of the CPU consumption as a function of only a
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Fig. 4. Observation points and the model built using two different features
for two different VNF (only the relevant feature is shown)

Fig. 5. Predicted value vs actual value in the three different configurations

subset of features. We choose two relevant features, the number
of packets and the number of flows and we train the model only
with these two features (Fig. 4). For the OVS configured with
firewall rules, we observe that the model is built using only the
number of flows (see Fig. 4 left), and disregards the number
of packets (the predicted CPU consumption is independent
from the number of packets, not shown in the figure). For the
SNORT, the opposite occurs, the CPU consumption is modeled
using only the number of packets and not the number of flows
(see Fig. 4 right). This is mainly because SNORT has to inspect
each packet individually, whereas the OVS has to decide what
to do which each flow. Note that the predicted models are not
linear, and thus they are not easily to model. Moreover, the
model built out of these two features is not good enough since
the prediction error is high. A bigger set of features describing
the traffic must be used to obtain a more accurate model.

On the other hand, when we train the model with all the
traffic features, the CPU consumption of the three different
scenarios can be predicted with a smaller error. Fig. 5 repre-
sents the predicted CPU consumption as a function of the real
CPU consumption. The closer to the diagonal, the better the
prediction is. Since most of the features are heavily correlated,
it is not possible to show the model as a function of some of
them.

Fig. 6 shows the CDF of the error absolute value (deviation)
in percentage. It can be observed that the CPU consumption
can be predicted with less than a 2 % of error in half of the
observations, and less than a 10 % of error in almost all the
observations. The relative error is similar, keeping in mind that
the absolute CPU consumption of the three configurations is
different.
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Error	  of	  the	  model	  <	  5%	  
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Fig. 7. Sorted training error of single features

During the training process, the ML algorithm learns and
discover the relationship between the features and the CPU
consumption and is able to detect which features are more
relevant. Some features may be more relevant, less relevant or
completely irrelevant depending on the specific VNF and/or
have a different relevance for a different VNFs. Fig. 7 shows
the average error (in percentage, normalized by the absolute
CPU consumption) when the ML algorithm is applied into
single features. The features are sorted by the error, from the
lower error in the prediction to the higher error, to facilitate
the analysis of the graphic. We can observe that while a
small group of features can be used to predict the CPU
consumption with a small error, the vast majority present a
certain correlation but with a bigger error, and some of them
cannot be used to predict the CPU consumption at all.

Note that in this particular experiment, similar results can
be obtained with simpler regression models, such as multiple
linear regression (using higher degree polynomials if needed).
However, the main advantages of ML is that it can easily
incorporate not linear behaviors in the same ML model. For
example, a single training can model the CPU consumption of
these three configurations, by only adding one feature indicat-
ing each configuration. Some of the features that describe the
topology and the configuration of the network in more complex

scenarios may not be appropriate for simpler lineal models.
From the results obtained in the experiment, we conclude that
it is feasible to use a ML-driven model to predict network
performance metrics.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented a cognizant model of the
network by taking advantage of the centralization offered in
SDN. The main idea is to build a model by using ML tech-
niques from the network and traffic parameters (features). This
model have interesting applications in the network control,
management and orchestration. We have studied the viability
of this concept by applying a simplification of this model in
certain network elements with real traffic. We have demon-
strated that this model work for this simple network, we have
shown that a performance metric can be predicted with good
accuracy. With these results, we envision that the proposed
network model can be built in more complex networks and to
predict other performance metrics.

To be able to build the complete model of the network and
to predict the behavior in the future, there is still work to be
done. It is necessary to find a concise way to describe the
relevant information of the network and the traffic, as well
as it is needed more precise traffic predictions to be able to
predict certain traffic fluctuations. However the main objective
of this paper is to show the potential offered by SDN, and
the great opportunities to optimize the networks that this new
research area offers.
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•  VNFs	  depend	  on	  
different	  features	  
according	  to:	  
– Type	  of	  VNF	  
– ConfiguraXon	  of	  VNF	  

•  Offline	  learning	  also	  
possible	  for	  many	  
scenarios	  
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Overlay	  RouXng	  (ongoing)	  

28	  



Overlay	  RouXng	  

Which	  underlay	  
paths	  should	  I	  
choose	  to	  send	  
traffic?	  

I	  learnt	  how	  to	  
route!	  Even	  if	  I	  don´t	  
seen	  the	  underlay!	  

Let	  me	  see	  what	  
happens	  when	  I	  
send	  traffic	  through	  
here…	  
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•  There	  are	  196	  pairs	  of	  nodes	  (N2)	  
–  Random	  uniformly	  distributed	  traffic	  

•  Simple	  Internet2	  topology	  (14	  nodes,	  22	  links)	  
•  Five	  rouXng	  opXons	  among	  nodes	  

•  1:	  Shortest	  path	  	  
•  2:	  Equally	  distributed	  among	  possible	  paths*	  
•  3:	  2/3	  shortest	  path	  +	  1/3	  2nd	  shortest	  path	  
•  4:	  4/5	  shortest	  path	  +	  1/5	  2nd	  shortest	  path	  
•  5:	  1/2	  1st	  path	  +	  1/3	  2nd	  path	  +	  1/6	  3rd	  path	  

–  Randomly	  chosen	  	  

•  Train	  the	  system	  with	  10000	  random	  samples	  
*:	  limited	  to	  10	  paths	  	  and	  
delay	  <=	  2·∙minDelay	  

Network	  Model	  (I)	  



Network	  Model	  (II)	  
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MODEL	  
Traffic	  (N2)	  

RouXng	  (N2)	  

UXlizaXon	  (E)	  

Delay	  (N2)	  

Topology	  is	  hidden	  



Results	  (ongoing)	  
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•  ArXficial	  Neural	  Network	  (1	  hidden	  layer)	  
–  196	  input	  features	  
–  200	  nodes	  in	  the	  hidden	  layer	  
–  Topology	  is	  hidden	  for	  ANN	  
–  Results	  only	  for	  one	  traffic	  policy	  

	  



Conclusions	  

•  Use-‐cases:	  where	  tradiXonal	  models	  are	  
impracXcal:	  
– ComputaXonally	  too	  expensive	  
– Hidden	  variables	  
– Not	  accurate	  

•  Paradigm	  shi|	  on	  how	  we	  manage	  and	  run	  our	  
networks	  
–  Unprecedented	  opXmizaXon	  
–  Lower	  management	  costs	  
–  Towards	  self-‐driving	  networks	  
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