Machine Learning in Spam Filtering

John Levine, IETF 94

Spam filtering

- It's hard
- Spammers adapt
- So filters have to adapt too

Metadata vs. contents

- Metadata
 - Connecting IP, Envelope to/from, Timing, etc.
 - Usually cheap
- Contents
 - Naughty words, statistical patterns, etc.
 - Always expensive, since it requires message receipt

Content filtering

- Originally static words or regexps
 - o viagra
 - v[1i][a@]gr[a@]
 - v[.]*[1i][.]*[a@][.]*g[.]*(a[.]*)?r[.]*[a@]
- Now usually dynamic

Bayesian filtering

- Paul Graham, A Plan for Spam
- Bayesian filtering on word sequences

Bayesian filtering

- Tokenize the message
 - All headers? Some headers? Body? Body minus attachments? Decoded attachments?
- Look up word sequences in database, compute score
- Do filtering
- Tune filters when they're wrong

Filter tuning

- Tune when user reports spam/not-spam
- Auto-tune as mail goes by
- Per system? Per user? Shared among multiple systems?

Spamassassin spamassassin.apache.org

- The de facto standard filterware
- Big perl module with plugins
- Fairly sophisticated bayesian filters
- Tuning is your problem via sa-learn

Bulk counting

- Characterize message as a checksum
- Razor razor.sourceforge.net
 - Spam reported manually or automatically
 - Shared database of checksums of spam
- Distributed Checksum Clearinghouse www.dcc-servers.net
 - Count them all
 - Whitelist legit bulk mail
 - IP reputation add-on