TOWARDS TRUSTWORTHY INTERWORKING OF AUTONOMOUS AGENTS

Pierre Peloso, Laurent Ciavaglia, Samir Ghamri-Doudane – Alcatel Lucent Bell Labs
Kostas Tsakgaris, Panagiotis Demestichas – University of Piraeus Research Center
Mikhail Smirnov, Fraunhofer
Zwi Altman, Orange Labs
Autonomous agents: an arbitrary definition*

- When an agent keeps **its own decision-making process** it is referred to as autonomous. Such agents are able to **i) interact with their environments** and other agents beyond concurrent state-determined interaction with this environment and other agents, and **ii) autonomously adapt their decision** (and thus adapt and modify their behavior) on future action to changing environment, changing conditions (i.e., using sequence of k observations of k past system states, the next action does not solely depend on the previous state but also depends on the information stored in the agent's memory that can itself serve as input to some learning process).

- **Learning agent**: when such agents can additionally perform reasoning, e.g., learn beliefs about the environment, other agents, or the utility of performing some actions, they are referred to as learning agents.

- It is important however to remember that each agent is resource-constrained: both the memory and the processing capacity of each agent are finite, implying limited capabilities in terms of sensing, computation, and communication.

Credits to D. Papadimitriou
#1 Assessing agent’s reliable functioning

Characterize-Test-Verify-Certify the performance and conformance of the function/system wrt. “referential” (e.g. canonical implementation, behavioral model, requirements, specifications, benchmark)
Assessing agents trustworthy interworking

Coordination
Conflict maps: pre-defined/a priori ; dynamic/run-time
Schemes: static/fixed/dynamic ; centralized/distributed
EXAMPLE CONTEXT
RADIO ACCESS NETWORKS USING SELF ORGANIZING NETWORKS

CHALLENGE
RAPIDLY VARYING TRAFFIC
Users move around, download, hence the traffic is moving, The user requirements depend on applications

SOLUTION
DYNAMICALLY ADAPTING NETWORK
Using SON functions to achieve the adaptation These are autonomous functions optimizing some of the network parameters

INDUCED ISSUES
CHAOS IN NETWORK DUE TO CONFLICTS
Caused by competition between Autonomic behaviors
CHAOS?

SON #1

SON #2
Challenge 1:

- Identifying conflicts
 - Prior to deployment
 - Once deployed over a network
 - Before running
 - Once running
 - Challenge: Avoiding false positive though not missing true positive
Example of a static conflict map

Parameters

- P1
- P2
- P3
- P4
- P5
- P6
- P7
- P8
- P9

Controls

- K1
- K2
- K3
- K4
- K5
- K6
- K7
- K8
- K9
- K10
- K11
- K12
- K13
- K14
- K15
- K16
- K17
- K18
- K19

KPI

- K1
- K2
- K3
- K4
- K5
- K6
- K7
- K8
- K9
- K10
- K11
- K12
- K13
- K14
- K15
- K16
- K17
- K18
- K19

Unified metrics

- Random access
- Failed HO
- Good HO
- Retransmission
- Throughput
- Bad HO
- New calls
- Dropped calls
- Blocked calls

Controls

- P1
- P2
- P3
- P4
- P5
- P6
- P7
- P8
- P9

Example of a static conflict map
IDENTIFYING CONFLICTS
AFTER DEPLOYMENT – BEFORE RUNNING

- Using self-description from Autonomic Functions to
 - Make inventory of metrics monitored, of actions performed and how they are computed
- Build graphs showing control loops (use knowledge for metrics influences)
- Identify conflicting control loops
THE KNOWLEDGE IS NEEDED TO IDENTIFY CONFLICTS
Knowledge-based Conflict Identification
Demystifying the conflict graph

\[\text{StationEmittingPower}_{\text{Cell B}} = \text{LoadBalancing}(\text{UserLoadOfStation}_{\text{Cell B}}, \ldots) \]

[... in order to perform action] [takes as input...]

\[\text{UserLoadOfStation}_{\text{Femto B.3}} = F(\text{StationEmittingPower}_{\text{Cell B}}, \text{Femto B.3}, \ldots) \]

[has impact on...]

Graph representation of the conflict graph:

- **UserLoadOfStation** of Femto B.1
- **StationEmittingPower** of Cell B
- **UserLoadOfStation** of Femto B.3
- **UserLoadOfStation** of Cell B
- Load Balancing NEM

set StationEmittingPower on Cell B
Knowledge-based Conflict Identification
Demystifying the conflict graph

- Potential conflict
- UserLoadOfStation of Femto B.1
- StationEmittingPower of Cell B
- BackhaulRatio of Femto B.3
- UserLoadOfStation of Femto B.3
- set BackhaulRatio of Femto B.3
- Backhaul Optimization NEM
- UserLoadOfStation of Cell B
- Load Balancing NEM
- set StationEmittingPower on Cell B
IDENTIFYING CONFLICTS
AFTER DEPLOYMENT – WHILE RUNNING

- **Either:**
 - Being able to find new dependencies between metric
 - Being able to find that autonomic functions are conflicting

- **The idea**
 - Use inference on monitored values to determine these dependencies
IDENTIFYING CONFLICTS CHALLENGES
SUMMARY

<table>
<thead>
<tr>
<th>Prior to Deployment</th>
<th>Requires all autonomic functions are known a priori. Does not take into account network.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before run</td>
<td>Requires an exhaustive knowledge to determine metric dependencies while making discrimination.</td>
</tr>
<tr>
<td>During run</td>
<td>Waits for conflicts to appear before addressing them. Can it scale?</td>
</tr>
</tbody>
</table>
TRUSTWORTHY COORDINATION
SPLITTING THE PROBLEM IN SMALLER CHALLENGES

- **Challenge 2:**
 - Applying coordination mechanisms
 - Choosing between available mechanisms
 - Affecting conflicts to mechanisms
 - Setting configuration parameters to such mechanism
Listing various coordination mechanisms

- Self-orchestration of multiple agents
- Hierarchical optimization
 - Time separation
- Centralized multi-objective optimization
- Control theory approaches
Self-Orchestration of multiple Agents

Principle:
- each NEM provides an estimated utility for the next time slot
- an orchestrator gives the token to the NEM with the highest utility

Examples:
Hierarchical optimization (a family of algorithms)

- **Principle:**
 - One control loop as precedence over the other

- **One example – Time separation**
 - Principle: Each Agent is executing its control loop at different paces

Load Balancing

Backhaul Optimization

- Congested cell
 - capacity bottleneck
- Traffic unbalanced
- Traffic balanced
- Load decreases
 - better capacity, enhanced stability
Centralized multi-objective optimization

- **Principle**
 - aggregation of the weighted utilities of each agent
 - Pareto optimal solutions are sought

\[U_{total} = \omega_{ICIC} U_{ICIC} + \omega_{CCO} + U_{cco} \]

Graphs:
- Multi and Single Objective Optimal Solutions
- Total Received Interference (dBm) vs Total Provided Throughput (Kbps)
- Corresponding objective weight vs Total Received Interference (dBm)

Tables:
- Multiobjective
- CCO Optimal
- ICIC Optimal
Use of control theory

Principle: Weighting each loop

\[\frac{\partial}{\partial t} \theta(t) = F(\theta(t)) \]

\[\theta_{n+1} = \theta_n + \epsilon(F(\theta_n) + M_n) \]

control loop

discretized control loop = SON

a set of control loops

coordinated control loops
APPENDIX
Introduction (1/2): Why coordination

- SON / NEMs are control loops
 - Control theory tells us that when putting together 2 independent control loops, one can get different behaviors (solutions)

\[\dot{x} = Ax \text{ with } x \in \mathbb{R}^2 \text{ and } A \in \mathbb{R}^{2 \times 2} \]
3GPP/SA5 specifies high-level solution for avoiding conflicts between SONs

- The SON coordination is a logical function, that can be implemented as a separate entity or as part of a SON function.
- Coordination is achieved using specific policies that can be of the form of
 - weights / priorities / specific actions

- Policies are defined for a set of use cases, e.g.
 - **COC-ES** (Cell Outage Compensation, Energy Saving)
 - **COC-CCO-ES** (CCO – Coverage Capacity Optimization)
 - **HOO-LBO** (Handover Optimization – Load Balancing Optimization)
 - "Policy may assign higher priority for HOO function than LBO function or higher weight for target of HOO function than targets of LBO function when resolving MRO issues …”

3GPP TS 28.628, “Self-organizing networks (SON) policy network resource model (NRM) integration reference point (IRP) information service (IS)” June 2013