

Modernizing the OpenPGP
Message Format

draft-ford-openpgp-format-00

Bryan Ford
Swiss Federal Institute of Technology (EPFL)

IETF 94 – November 3, 2015

Possible Goals for Discussion

● Modernize cryptographic suite
– Deprecate SHA-1, shift to authenticated encryption

● Metadata protection for encrypted files
– Leave no byte unencrypted

– Padding to minimize leakage via length

● Partial-file integrity protection [DKG, CFRG list]
– Streaming-mode incremental integrity checking

– Integrity-protected random access

● Others???

Cryptographic Suite

Modernizing cipher suite, especially MACs

● Ditch SHA-1, Modification Detection packet

● Support authenticated encryption (AEAD)

Which scheme(s)? Some options:

● AES-GCM: well-established, safe if not shiny

● Keccak/SHA-3 sponge: newly standardized

● ChaCha20-Poly1305: fast, popular “alt-crypt”

● Future: CAESAR competition winner, finalist(s)

What about passphrase? Adopt scrypt/???

Cryptographic Suite

Some technical format issues:

● Repurpose existing packets (tags 18+19)
or define new AEAD-protected packet (tag 20?)

● Merge MAC check into encrypted data packet?
Safe to assume MACs are always fixed-length?

● AEAD nonce: always explicitly transmitted?
Implicitly defined (e.g., by counting within file)?

● “Additional Data” (AD): any use in OpenPGP?

Metadata Protection

Should encrypted files leak all this metadata?

8c 0d 04 03 03 02 08 70 cb 01 3b 37 b6 dd c3 c9
4a 12 b0 b1 0e 0a bd bf f1 43 f3 17 27 20 51 d0
67 73 70 3a d9 3f 7e 85 1c 6d bb ca d3 ed cc d4
7c 3d 50 de 35 19 f9 f6 1f 0b b7 e7 fd 18 77 29
6a 76 92 65 b8 63 72 f3 e5 c5 f7 d6 05 bc b7 17
79 55 59 22 a3 5d 20 69 1f e6 96

8C is the packet tag which
says that this is a symmetric-
key Encrypted session
packet(type 3). Which in this
case means it is a file
encrypted with a passphrase. This says it is a

Symmetric data
Packet.(type 9)

This is the
length of the
encrypted
message.

This is the message encrypted
by the symmetric key

generated from the information
in the first packet.

This says that the
symmetric key
algorithm used

was CAST5.

This says that the
String to key function
is salted and iterated.

This is the salt value

This is the
count value

Packet header
First byte=tag

Second=length
Packet version

Symmetric
algorithm used

Type of S2K used
Hash algorithm

Salt value
Count value

Encrypted data

This says that the
Hash algorithm used

was SHA-1

Metadata Protection

Metadata that might be useful to (some) attackers:

● Magic: this is an OpenPGP file! Suspicious!

● Cipher: is it worth trying to crack?

● Passphrase: worth trying password cracker?

● Recipient key-IDs: where to point rubber hose?

● # of recipients: aha, it's that group of dissidents!

Metadata Protection

Set goal to “encrypted every bit”?

● Produce Uniform Random Blobs (URBs)

Technical+usability challenges:

● How does recipient find, decrypt session key?
– Obviously requires “trial decryptions”; fast enough?

● How to efficiently handle multiple
– Passphrases

– Receipient public-keys

– Public-key schemes, curves

Claim: all are manageable. But how worthwhile?

What about Padding?

Encrypted file length leaks metadata too!

● Straw-man: pad all encrypted files to same size
● Reduces information leakage to zero, yay!

● Wood-man: pad to next power of two
● Reduces leakage from O(log L) to O(log log L)
● “Best possible” while tolerating constant-factor waste

● Brick-man: pad a bit more intelligently
● Still reduce leakage from O(log L) to O(log log L)
● But limit waste to 12% max, decreasing with file size
● Details in draft-in-progress, will share on request

Encrypted file size vs padding waste
Length Length bits Leak bits Length inc Max waste

1 1 0 1 0.00%
2 2 1 1 0.00%
4 3 2 1 0.00%
8 4 2 2 11.11%

16 5 3 2 5.88%
32 6 3 4 9.09%
64 7 3 8 10.77%

128 8 3 16 11.63%
256 9 4 16 5.84%
512 10 4 32 6.04%

1024 11 4 64 6.15%
2048 12 4 128 6.20%
4096 13 4 256 6.22%
8192 14 4 512 6.24%

16384 15 4 1024 6.24%
32768 16 4 2048 6.25%
65536 17 5 2048 3.12%

131072 18 5 4096 3.12%
262144 19 5 8192 3.12%
524288 20 5 16384 3.12%

1048576 21 5 32768 3.12%
2097152 22 5 65536 3.12%
4194304 23 5 131072 3.12%
8388608 24 5 262144 3.12%

Partial-File Integrity Protection

Brought up by DKG, discussed on CFRG list.

Two motivating use-cases: (orthogonal?)

● Streaming-mode decryption (restore backup)
– Check bytes before they leave pipe, w/o storing it all

– Need incremental MAC+signature per chunk?

● Random-access decryption (ala Tahoe-LAFS)
– Encryptor builds Merkle tree, stores in trailer

– Decryptor uses to decrypt, check individual chunks

● If we support, are they mandatory? Optional?
– Simplicity vs power vs usability?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

