
JSEP

IETF 94
ekr@rtfm.com

juberti@google.com
fluffy@cisco.com

mailto:ekr@rtfm.com
mailto:ekr@rtfm.com
mailto:juberti@google.com
mailto:juberti@google.com
mailto:fluffy@cisco.com
mailto:fluffy@cisco.com

Changes since IETF 93

● Filled in setLocal and setRemote (*)
● Clarify ICE default candidates during gathering (*)
● Clarify downscaling and upscaling rules
● Update SDP modification rules
● Updated to latest datachannel SDP.
● Allow multiple fingerprint lines
● Dummy candidates use IPv4 (again)

Applying local descriptions (S 5.7)

● Verify no inappropriate SDP modifications
● Loop over m= sections

○ ICE: if new gather, candidates; if ufrag/password changed, trigger restart
○ Process RTCP mux/demux
○ Build RTCP header extension->URL table
○ Build MID demux table
○ Build payload type->media format table
○ Build rtx payload->primary payload table
○ Prepare to send/receive based on direction attributes

Applying remote descriptions (S 5.8)

● ICE
○ If offer && ufrag/password changed, record restart needed
○ Configure ICE components with ufrag/password
○ Pair up ICE candidates
○ Start connectivity checking with any pairs

● RTP
○ Build payload type->media format table
○ Build rtx payload->primary payload table
○ Enable matching fmtp parameters
○ Enable matching RTCP feedback mechanism
○ Set max bandwidth based on TIAS (or AS if no TIAS)
○ If audio set up ptimes for each PT

Applying answers (S 5.9)

● If m= was rejected (port==0) stop transmitting/receiving
● If DTLS fingerprint changed, tear down connection
● Configure DTLS if not already set up
● RTCP

○ If RTCP-muxing, disable RTCP component
○ RTCP-mux to RTP-non-mux transitions are an error
○ Configure reduced-mode RTCP if enabled

● RTP:
○ If sendrecv/sendonly, prepare for transmission once transport set up

● SCTP
○ Prepare for SCTP handshake once transport setup

● Discard ICE components for non-primary bundled m= lines
● Set canTrickle property

Default Candidates

● RFC 5245 Section 4.3 requires a “default” candidate
● With trickle we currently use a “dummy” candidate

○ But what about after some gathering has happened (post setLocal CreateOffers)
● Proposed rules

○ If no candidates gathered, use dummy [existing]
○ If some candidates gathered use “best” [not in draft yet]
○ If any candidate pairs have completed, use the one in use [new]
○ Once ICE is completed, use selected pair [RFC 5245]

Default mux policy

● Text has bundle policy but no mux policy
● Obviously this is some kind of oversight
● Option 1

○ Fix a default.
○ Our recommendation is “require” (PR#183)

● Option 2
○ Just forbid non-MUX entirely
○ Some discussion of this but not clear what WG direction is

● Discuss

#162: RFC 5888 (AGAIN!!!!)

● Proposal at IETF 93:
○ Answerer has to match (media type, sync group) tuple when matching tracks to m= lines
○ This allows offerer and answerer to differ in their views on sync
○ Sync groups maintained on reoffers

#162: RFC 5888 Example

● Caller (wants to sync its outgoing streams); offer
m=audio (mid:a)

m=video (mid:v)

a=group:LS a v

● Callee (no sync); answer
m=audio (mid:a) recvonly

m=video (mid:v) recvonly

a=group:LS a v (same as caller)

● Callee reoffer
m=audio (mid:a) recvonly

m=video (mid:v) recvonly

m=audio (mid:a2) sendonly

m=video (mid:v2) sendonly

a=group:LS a v

● Does this look right?
● Will legacy equipment handle such a reoffer properly?

Report from TPAC: Object Model

● Initial version of API had addStream, setLocal, setRemote
● Then we added addTrack, RtpSender, RtpReceiver

○ Provides per-track control over sending and receiving
● Latest update adds a RtpTransceiver object, which models a m= section

○ Properties:
■ MID
■ RtpSender
■ RtpReceiver

● App can use this to choose which tracks go in which m= sections
○ Or can let browser pick by calling addTrack
○ addTrack picks the first compatible* m= section

Report from TPAC: Remove OfferToReceive*

● Transceivers give direct control of recv-only m= lines in offer
○ OfferToReceive is comparatively clunky compared to addTransceiver

● Consensus: remove OfferToReceive from spec
○ Browsers can continue to support for backcompat
○ Expected to deprecate then remove

Report from TPAC: Rollback and addTrack

● Issue from TPAC: what to do with setRemote(offer), addTrack(), rollback
sequence?
○ Problem: what do you do with the track?
○ WG settled on option that keeps the transceiver for the track, but not bound to anything

● What about MIDs?
○ Remember they need to be symmetrical

● Resolution: MIDs can exist in three states
○ null: addTrack called but…

■ setLocal not called
■ no paired remote tracks

○ provisional: appear in createOffer but setLocal hasn’t been called
○ committed: either createOffer/setLocal was called or paired with remote track

● Rollback blows away the MID state

Recycling Rules

● The current recycling rules are super-aggressive
○ addTrack() will use an existing m= line if possible
○ Note: transceivers give tight control; this is only about default behavior

● Should half-dead m= lines be recycled?
○ addTrack()/createOffer()/setLocal()/setRemote(): 1 sendrecv m= line
○ removeTrack()/createOffer()/setLocal()/setRemote(): 1 recvonly m= line (half-dead)
○ addTrack()/createOffer(): ??? m= lines

● Current JSEP pretty clearly says the answer is yes
○ But this means that previously negotiated parameters (codecs, fmtp, b=) are still in-place
○ … which makes the reoffer weird
○ Would it be better to keep half-dead half-dead?
○ Proposal: addTrack fills the first compatible port=0 (offerer) or newly proposed

(answerer) m= line, otherwise adds one

Recycling and MIDs

● RTP transceiver objects are uniquely identified by MID.
● When a transceiver is stopped (i.e. m= line rejected), the object is

permanently disabled.
● Ergo, when a rejected m= line is recycled, a new transceiver is created,

and it (and the m= line) must have a new MID.
● 5888 hints at this being ok, but never spells it out:

 ... subsequent offers (e.g., in a re-INVITE) SHOULD use the same "mid" value for already existing media streams.

● Any concerns?

Report from TPAC: IP Address Leakage

● Proposed resolution: four levels of behavior
○ Everything [with consent]
○ Restricted gathering I (default host candidate [+ RFC 1918?]) [default behavior]
○ Restricted gathering II (no host candidates) [via pref, extension
○ Proxy only [via pref, extension]

● Open issue: what to gather in restricted I
○ Option 1: Just the default host candidate
○ Option 2: Default + all 1918 candidates

■ Pair 1918s with like
■ Still need rules for IPv6 link-locals, etc.

○ Waiting for measurements for Option 1 versus Option 2

Other topics?

