

Controller Oller Perfo

Benchmarking Drafts Overview for Members of SDNRG (94th IETF, Yokohama)

Draft References

draft-ietf-bmwg-sdn-controller-benchmark-term-00

draft-ietf-bmwg-sdn-controller-benchmark-meth-00

Authors

Bhuvaneswaran Vengainathan Anton Basil

(Veryx Technologies)

Mark Tassinari (Hewlett-Packard)

Vishwas Manral (Ionos Corp)

Sarah Banks (VSS Monitoring)

Agenda

Benchmarking Drafts Overview

Q&A

What BMWG Do?

BMWG Benchmarks are :

- A standardized test that serves as a basis for performance evaluation and comparison.
- Unambiguous method, repeatable
- Reveal valuable characteristics to users and provide insights to improve internetworking technology
- Permit cross-vendor comparison with externally observable measurements

BMWG Benchmarks are NOT:

- Functional tests
- Evaluated with PASS/FAIL criteria`
- Performed on live networks, or performed with live network traffic

BMWG – Related Work Highlights

NFV Benchmarks :

- VNF and Infrastructure Benchmarking Considerations (WG Adoption)
 - https://datatracker.ietf.org/doc/draft-ietf-bmwg-virtual-net/
- Benchmarking Virtual Switches in OPNFV
 - http://tools.ietf.org/html/draft-vsperf-bmwg-vswitch-opnfv-01.txt
- Benchmarking Methodology for Virtualization Network Performance
 - https://tools.ietf.org/html/draft-huang-bmwg-virtual-network-performance-01
- Considerations for Benchmarking High Availability of NFV Infrastructure
 - https://tools.ietf.org/html/draft-kim-bmwg-ha-nfvi-00

Draft Overview

Terminology for Benchmarking SDN Controller Performance

- Defines various benchmarking tests and associated terms
- URL https://
 https://
 https://

Methodology for Benchmarking SDN Controller Performance

- Defines methodologies to carry out the tests defined in benchmarking terminology draft
- URL https://
 https://
 https://

Objective & Scope

Objective:

• Define metrics and methodology to assess/evaluate SDN controllers independent of its northbound/southbound protocols support.

✓ Scope

- This memo considers SDN controller as a function that controls and manages SDN nodes.
- SDN controller that does not have control plane functionality is out of this memo's scope

Terminologies Overview

SDN Terms

- Defines terminologies that are used in benchmarking tests (e.g., Flow, Northbound Interface, Proactive flow provisioning etc.,)
- TODO: Need to reference some of the terms defined in RFC 7426

Test Configuration/Setup Terms

 Defines test parameters used in benchmarking tests (E.g., Test Iterations, Test Duration, No. of SDN nodes etc.,)

Benchmarking Terms

- Defines comprehensive set of tests for benchmarking SDN controllers
- Performance
- Scalability
- Reliability
- Security

Benchmarking Tests

Performance Tests

Metrics	Description	Units
1. Network Topology Discovery Time	 Time taken to discover the network topology - nodes and links by a controller 	Milliseconds
2. Asynchronous Message Processing Time	 Time taken by the controller to process an asynchronous message. 	Milliseconds
3. Asynchronous Message Processing Rate	 Maximum number of asynchronous messages that a controller can process within the test duration. 	Messages processed/sec
4. Reactive Path Provisioning Time	 Time taken by the controller to setup a path reactively between source and destination node 	Milliseconds
5. Proactive Path Provisioning Time	 Time taken by the controller to setup a path proactively between source and destination node 	Milliseconds
6. Reactive Path Provisioning Rate	 Maximum number of independent paths a controller can concurrently establish between source and destination nodes reactively within the test duration 	Paths provisioned/sec

 ∞

Benchmarking Tests

Performance Tests (Contd.)

Metrics	Description	Units
7. Proactive Path Provisioning Rate	 Maximum number of independent paths a controller can concurrently establish between source and destination nodes proactively within the test duration 	Paths provisioned/sec
8. Network Topology Change Detection Time	 Amount of time required for the controller to detect any changes in the network topology. 	Milliseconds

Reliability Tests

Metrics	Description	Units
1. Controller Failover Time	 Time taken to switch from an active controller to the backup controller, when the controllers work in redundancy mode and the active controller fails 	Milliseconds
2. Network Re-Provisioning Time	Time taken to re-route the traffic by the Controller, when there is a failure in existing traffic paths.	Milliseconds

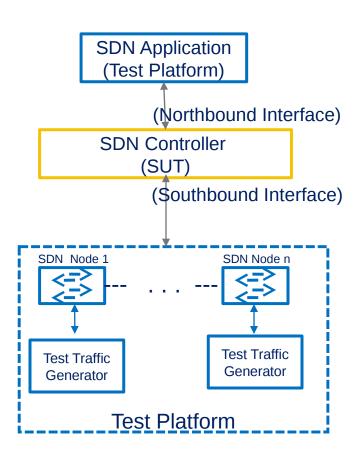
O

Benchmarking **Tests**

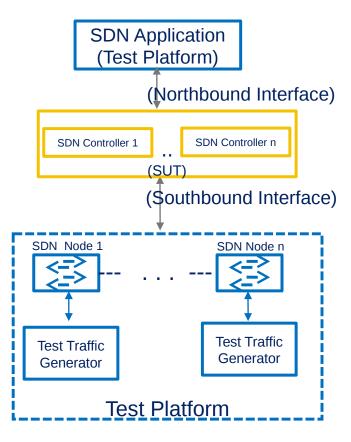
Scalability Tests

Metrics	Description	Units
1. Control Sessions Capacity	 Maximum number of control sessions the controller can maintain 	■ N/A
2. Network Discovery Size	 Network size (number of nodes, links and hosts) that a controller can discover. 	■ N/A
3. Forwarding Table Capacity	 Maximum number of flow entries that a controller can manage in its Forwarding table 	■ N/A

Security Tests


11/1/15

Metrics	Description	Units
1. Exception Handling	 Determine the effect of handling error packets and notifications on performance tests 	Milliseconds
2. Denial of Service Handling	 Determine the effect of handling denial of service (DoS) attacks on performance and scalability tests. 	Deviation from baseline metrics


94th IETF

Test Setup

Standalone Mode

Cluster Mode

Test Reporting

Test Configuration Parameters:

- Controller name and version
- Northbound protocols and versions
- Southbound protocols and versions
- Controller redundancy mode (Standalone or Cluster Mode)
- Connection setup (Unencrypted or Encrypted)
- Network Topology (Mesh or Tree or Linear)
- SDN Node Type (Physical or Virtual or Emulated)
- Number of Nodes
- Number of Links
- Test Traffic Type
- Controller System Configuration (e.g., CPU, Memory, Operating System, Interface Speed etc.,)
- Reference Test Setup (e.g., <u>Section 3.1</u> etc.,)

Controller Settings Parameters:

- Topology re-discovery timeout
- Controller redundancy mode (e.g., active-standby etc.,)

13

Thank You!!!

Please send your feedback/comments to

bmwg@ietf.org

(or)

draft-ietf-bmwg-sdn-controller-benchmark-meth@tools.ietf.org

14