
Architecture for Scheduled Use of
Resources

draft-zhuang-teas-scheduled-resources-00

Yan Zhuang (zhuangyan.zhuang@huawei.com)
Qin Wu (bill.wu@huawei.com)

Adrian Farrel (adrian@olddog.co.uk)

IETF-94 : Yokohama : November 2015

What are the Services?
• The services we are considering are LSPs that

reserve bandwidth
– Any type of LSP
– Bandwidth is basically “network resources”

• The value-add is that services can be booked for a
time-slot in the future
– “Guaranteed” to be provided

• Unless something changes!

• Further option is to vary an existing or booked service
during a time window in the future
– Add or reduce bandwidth for a period

• Services are used
– When there are limited physical resources

• Booking wavelengths in optical networks
– To make maximal use of resources in networks

• Data centre inter-connect

Why This Draft?

• In Prague we noticed two drafts proposing
solutions in this space
– draft-zhuang-pce-stateful-pce-lsp-scheduling
– draft-chen-pce-tts

• There is also some older work
– draft-yong-ccamp-ason-gmpls-autobw-service
– draft-zhang-pce-stateful-time-based-scheduling

• These drafts had different approaches and some
unresolved issues

• It seems helpful to step back and look at the
issues and architecture before working on
solutions
– TEAS is the right place to do this TE architecture

work

What Does the Draft Do?
• Aims to get us all on the same page

– Provide a reference for future work
• How?

– Present a problem statement
• When and why reserve resources?
• What can go wrong if you don’t?

– Describes the architectural concepts
• Scheduling state: what and where
• Discusses pros and cons of options
• Recommends an architectural approach

– Architectural overview
• Figure
• Service request processing
• Initialisation and recover processing

Why do We Need the State?

• Want to maximise chance of service being
delivered
– Avoid contention for resources

• Time arrives and resource is in use by someone else

• Pre-emption is disruptive

• Make-before-break re-optimization takes time

– Which resources can we take out of service?
• When is it safe?

• When must they be returned?

• Which planned services need to be re-planned or
alerted?

What is the State We Need to
Store?• State applies to

– The resources on a path through the network
– The timing of reservation of those resources

{ link id;
 resource id or reserved capacity;
 start time;
 end time }

• How much state is this?
– How many start times do we need to support?

• What is the arrival rate?
– How long is a resource booked for?

• What is the hold time?
• This question can be mitigated by:

– Can we set a limited horizon?
• How far into the future do we look?

– Can we reduce the granularity?
• Can we operate in one hour units, or 10 minutes, or 30

seconds, or one week?

Where do we Need the State?
• It depends on the architecture and who can request services
• Range of options…

– Many applications can create “on-demand” services
– Many applications can book resources
– Centralised control of booking
– Centralised control of all services

• These choices lead us to…
– State is needed where time-based path computation is done
– State is needed where on-demand path computation is done
– State is needed where resources are reserved

• This is a philosophical question that substantially changes:
– What function we can provide
– What changes to protocols we make
– What to implement

What do we mean by “distributed
state”?

• We could mean
– State is held where the resource exists

• This prevents other services stealing the resource
• But is doesn’t help other computation nodes

– State is held “everywhere” in the network
• Prevents stealing resources
• But that is unlikely to be an issue because all path

computation nodes can see what bookings exist
– PCE servers
– NMS / SDN controllers
– Head-end LSRs requesting new services

How to Achieve Distributed
State

• It all depends on the service architecture
• If we have centralised computation, but

want to police reservations
– State is in the PCE and stored in the network

nodes

• If we have distributed computation and
want to police reservations
– State is in the network nodes and needs to be

distributed to all points of computation

Why are People Concerned with
Distributed State?

• It’s a question of volume of data
– If a node has 100 interfaces that can support 10,000

TE LSPs each, there is already some “interesting”
challenges for state maintenance for a single point in
time (i.e., now)

– Suppose we allow booking in 15 minute intervals for a
period of one month into the future

• That is up to 4*24*30 = 2880 times as much state

– In reality
• One month may be too short
• State can be considerably compressed

• If “future LSPs” are installed using RSVP-TE, then
each such LSP also requires considerable RSVP
protocol state

How Does Distributed State
Persist?

• If state is installed by RSVP-TE we have
to address the question of how the “future
LSPs” survive network faults
– We can use all of the soft-state/hard-state

work
– We can use RSVP-TE Recovery processing
– But there is potentially a lot of processing to

be done

• If state is installed some other way
– That state needs to be resynched on recovery

Why are People Concerned by
Distributing State?

• Suppose we want every node in the network
to know about the scheduling state
– This is no different from wanting every node to

know about the other TE state
– So we could use the IGP?

• It is potentially a lot of information
• The IGP has to refresh all information periodically

(unless we change it)
• The information must be advertised as new services

are booked
• Every node in the network has to hold all of the booking

information for the whole network

Which leads to the alternative…

• Scheduling information is only held centrally
• This fits well with an active stateful PCE

approach
– Update the TED to show future reservations
– Allow the LSPDB to hold future LSPs

• Can we integrate this with
– Stateless PCE uses

• Yes: easy

– On-demand, non-PCE LSPs
• Yes: no different from resource failures!

Details, details
• No changes to Signaling, IGPs, BGP-LS, information stored in

the network
• Updates to PCEP to show LSP timing
• Synchronising databases between PCEs

– It is messy, but no different from synching timeless LSPDBs
• Handling multiple PCEs for the same network

– This is no different from today!
– Two PCEs might both assign the same resources at the same

time
• At least with scheduling there is a chance to resolve this before the user

notices

• Handling cooperating PCEs
– We don’t think this changes
– PCEs cooperate using PCReq

• When one PCE responds to another, it “guarantees” a reservation
• This might need to be released if not used

Warning to All Users!

• When a PCE agrees to a scheduled
service, this is not a guarantee!
– Network resources may fail
– A more important user may come along

• The scheduling service is:
– “We will try to deliver, possibly using re-

routing, and let you know if the situation
changes”

Next Steps for This Work

• Discuss to see whether we all agree
– Early email exchanges suggest

• Mainly agreement

• Some desire to support distributed state

• Concern to work through the details

• Decide whether this needs to be codified
as an RFC by the TEAS WG
– We could just discuss, agree, and move on

	Architecture for Scheduled Use of Resources draft-zhuang-teas-scheduled-resources-00
	What are the Services?
	Why This Draft?
	What Does the Draft Do?
	Why do We Need the State?
	What is the State We Need to Store?
	Where do we Need the State?
	What do we mean by “distributed state”?
	How to Achieve Distributed State
	Why are People Concerned with Distributed State?
	How Does Distributed State Persist?
	Why are People Concerned by Distributing State?
	Which leads to the alternative…
	Details, details
	Warning to All Users!
	Next Steps for This Work

