
Token Binding over HTTPS

Vinod Anupam

IETF 94 ● Yokohama ● November 2015

Overview

1. Recap (for newcomers)

2. Changes to tokbind-https

3. Threat model

1. Recap (for newcomers)

2. Changes to tokbind-https

3. Threat model

Overview

Recap: The Token Binding Header

Client example.comTLS
GET / HTTP/1.1
Host: example.com
Token-Binding: DLF02LDSK3DMS28SA…
User-Agent: …
...

provided_token_binding: {
 signature(EKM),
 public_keyexample.com
}

Recap: The Token Binding Header

Client example.comTLS
GET / HTTP/1.1
Host: example.com
Sec-Token-Binding: DLF02LDSK3DMS28SA…
User-Agent: …
...

provided_token_binding: {
 signature(EKM),
 public_keyexample.com
}

● client uses different key pairs for different servers

● client protects private keys

● client discloses public key of pair to server

● client proves to server that it controls private key

Example: Sending Header

TLS
POST /Login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
…
username=bob&pw=password

Client example.com

● Client transmits Token Binding key

Example: Binding Cookies

● Server binds tokens to Token Binding key

TLS
POST /Login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
…
username=bob&pw=password

Client example.com

200 OK
Set-Cookie: SID=sdkhfoeirusakjnf34aslkd
…
<html>Welcome!</html>

cookie_val = {
 user_id: 1234456,
 last_login: 9348230984,
 tb_key: public_keyexample.com
 …
}

● Server confirms that cookie matches Token Binding key

Client example.comTLS
GET /Inbox.html HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd

provided_token_binding: {
 signature(EKM),
 public_keyexample.com
}

cookie_val = {
 user_id: 1234456,
 last_login: 9348230984,
 tb_id: public_keyexample.com
 …
}

Example: Verifying Cookies

Federation

Client

rp.comTLS

idp.com

1: “I want to log in”

2: “Go get an id token from idp.com”

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

“Who are you??”

“username: bob & passwd: 12345”

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

5: “Here is the id token from idp.com”

6: “You’re logged in. Here is your cookie”

“Who are you??”

“username: bob & passwd: 12345”

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

5: “Here is the id token from idp.com”

6: “You’re logged in. Here is your cookie”

“Who are you??”

“username: bob & passwd: 12345”

Without federation
support, token will
be bound to IDP

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

5: “Here is the id token from idp.com”

6: “You’re logged in. Here is your cookie”

“Who are you??”

“username: bob & passwd: 12345”

Without federation
support, RP can’t tell
if client is legitimate
user of token

Without federation
support, token will
be bound to IDP

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

5: “Here is the id token from idp.com”

6: “You’re logged in. Here is your cookie”

“Who are you??”

“username: bob & passwd: 12345”

Need: Token from
IDP must be bound
to client-RP TLS
connection.

Federation

Client

rp.comTLS

idp.comTLS

1: “I want to log in”

2: “Go get an id token from idp.com”

3: “Give me an id token for rp.com”

4: “Here is your id token for rp.com”

5: “Here is the id token from idp.com”

6: “You’re logged in. Here is your cookie”

“Who are you??”

“username: bob & passwd: 12345”

Need: Client must
tell IDP the binding
key for client-RP
TLS connection

Need: Token from
IDP must be bound
to client-RP TLS
connection.

How to Trigger Referred Token Bindings?

Relying Party uses HTTP Redirect

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

How to Trigger Referred Token Bindings?

Relying Party uses HTTP Redirect

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

RP tells client to
send its RP token
binding key to target
server of redirect
(IDP)

Federation with HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

Federation with HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS
GET /rp-login HTTP/1.1
Host: idp.com
Token-Binding: MDLF02LDSK3DMS28S…
Referer: rp.com
User-Agent: …

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

Federation with HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS
GET /rp-login HTTP/1.1
Host: idp.com
Token-Binding: MDLF02LDSK3DMS28S…
Referer: rp.com
User-Agent: …

302 Moved Temporarily
Location: https://idp.com/
Include-Referer-Token-Binding-Id: true

provided_token_binding: {
 signature(EKM),
 public_keyidp.com
}

referred_token_binding: {
 signature(EKM),
 public_keyrp.com
}

Federated Binding

TLS
GET /rp-login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…Client idp.com

302 Moved Temporarily
Location: https://rp.com/login?tok=hfoeimk...
…

token = {
 user_id: 1234456,
 name: Bob,
 tb_id: public_keyrp.com
 …
}

Overview

1. Recap (for newcomers)

2. Changes to tokbind-https

3. Threat model

diff tokbind-https-01 tokbind-https-02

● Header: Sec-Token-Binding ⇒ Token-Binding

● Prove key possession by signing EKM (instead of tls_unique)
○ TLS Exported Keying Material, per RFC 5705

● Updated Security Considerations
○ Why disallow scripts from setting Token-Binding header?
○ Why prove possession of two keys for federation?

Overview

1. Recap (for newcomers)

2. Changes to tokbind-https

3. Threat model

Intent of Token Binding

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Intent of Token Binding

Why?
Binding token to public key should make it possible to enforce that
token can be used only by a client that can prove possession of the private key,
and by nobody else.

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Threats
server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

1. Attacker uses victim’s private key

○ countermeasure: keep private key secret

2. Attacker makes victim present attacker’s public key
(== client sends attacker-generated token-binding header)
○ countermeasure: keep tls-unique secret
○ countermeasure: don’t let attacker set token-binding header

Threats

1. Attacker uses victim’s private key
○ countermeasure: keep private key secret
○ countermeasure: never transmit private key over network

2. Attacker makes victim present attacker’s public key
(client sends attacker-generated token-binding header)
○ countermeasure: keep tls-unique secret
○ countermeasure: don’t let attacker set token-binding header

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Threats

1. Attacker uses victim’s private key
○ countermeasure: keep private key secret
○ countermeasure: never transmit private key over network

2. Attacker makes victim present attacker’s public key
(client sends attacker-generated token-binding header)
○ countermeasure: keep EKM secret

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Threats

1. Attacker uses victim’s private key
○ countermeasure: keep private key secret
○ countermeasure: never transmit private key over network

2. Attacker makes victim present attacker’s public key
(client sends attacker-generated token-binding header)
○ countermeasure: keep EKM secret
○ countermeasure: don’t let attacker set Token-Binding header

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Threats

1. Attacker uses victim’s private key
○ countermeasure: keep private key secret
○ countermeasure: never transmit private key over network

2. Attacker makes victim present attacker’s public key
(client sends attacker-generated token-binding header)
○ countermeasure: keep EKM secret
○ countermeasure: don’t let attacker set Token-Binding header
○ countermeasure: make client prove possession of every key in header

server verifies
public-key signature
in token binding

⟹
client controls
corresponding
private key

Questions

