
Decentralizing Authorities
(such as CT log servers)

http://datatracker.ietf.org/doc/draft-ford-trans-witness/
http://arxiv.org/abs/1503.08768
https://github.com/DeDiS/cothority

Ewa Syta, Iulia Tamas, Dylan Visher, David Wolinsky – Yale University
Bryan Ford, Linus Gasser, Nicolas Gailly – Swiss Federal Institute of Technology (EPFL)

IETF – November 2, 2015

http://datatracker.ietf.org/doc/draft-ford-trans-witness/
http://arxiv.org/abs/1503.08768
https://github.com/DeDiS/cothority

Why do we have authorities?

Alice

Check E-mail

Send Text-Message

Download
software update

Bob

Why do we have authorities?

Alice
Bob

?
What is:
● Gmail's SSL public key?
● Bob's IM public key?
● Latest version of App?

Respect my
Authoritah!

When authorities go bad

Alice

Respect my
Authoritah!

Bob

Fake

Fake Bob

Fake

Challenge: Decentralize Authorities

Split important authority functions across
multiple participants (preferably independent)

● So authority isn't compromised unless
multiple participants compromised

From weakest-link to strongest-link security

Current Transparency Solutions

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

● Perspectives
● Certificate Transparency
● AKI, ARPKI
● CONIKS

!!
!!

!!

!!

Freetopia

An Important Assumption

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Takes time,
may compromise
alice's privacy

Assumes Alice can,
and is willing to,
gossip with
witnesses

Tyrannia Freetopia

A Different Scenario

Alice

Respect my
Authoritah!

Bob

Witnesses

public logs
monitors
auditors

Gen. Rex
Fake CA

Fake Log

Limitations of Gossip
Detection relies on clients to gossip, but

● Client must be able to gossip
– May fail if attacker controls client's network:

compromised WiFi cafe, state-controlled ISP

● Client must be willing to gossip
– Creates privacy issues for clients

● Client must have time to gossip
– Can't delay page load times → attack windows;

bigger problem if CT used for software updates!

● Client must maintain state to gossip
– Fails if client is amnesiac, e.g., Tails

Log servers are authorities too
Security is still “weakest-link” across log-servers

Powerful adversary still needs to “acquire” only

● Any one private CA key

● Any two private CT log-server keys
(“one Google, one not-Google”)

...to silently, secretly MITM-attack victims
by constructing “fake view of CT universe”

3 keys is a better compromise threshold than 1,
but still not as decentralized as we might like!

Towards Proactive Protection
We would like to
● Proactively protect clients from attackers

using stolen/compromised authority keys
– Minimize, ideally eliminate vulnerability window

● Disincentivize attackers from trying to
“acquire” authority's keys in the first place
– By making them a lot less useful even if acquired

Including CA keys, CT log server keys,
DNSSEC keys, NTP time server keys, …

Protection by Collective Witnessing
“Who watches the watchers?”
Public witnesses!

Clients check authority's signature
and co-signatures of many witnesses

Without communication, client knows:

● Any signed authoritative statement
has already been widely witnessed

● Any signed authoritative statement
conforms to checkable standards

Statement could still be bad, but it won't be secret!

Witnesses

Respect my
Authoritah!

CoSi: Scalable Collective Signing
Semantically like “gathering a list of signatures”
but more scalable and efficient:
● Authority server generates statements
● Witness servers collectively sanity-check

and contribute to authority's signature
● Each statement gets a collective signature:

small, quick and easy for clients to verify

→ Authority (or key thief) can't sign anything
in secret without many colluding followers

CoSi: Scalable Collective Signing

Authority
(leader)

WitnessesWitness
Cothority

“Bob's public key is Y.”

“The time is 3PM.”

“Gmail's public key is X.”

“The latest version of Firefox is Z.”

CoSi Crypto Primitives

Builds on well-known primitives:
• Merkle Trees
• Schnorr Signature and Multisignatures

CoSi builds upon existing primitives but makes it
possible to scale to thousands of nodes
• Using communication trees and aggregation,

as in scalable multicast protocols

Merkle Trees
• Every non-leaf node labeled with the hash of the

labels of its children.
• Efficient verification of items added into the tree
• Authentication path - top hash and siblings hashes

A B C D

E=H(H(A)|H(B))

top hash

H(A) H(B) H(C) H(D)

F=H(H(C)|H(D))

?

G=H(H(E)|H(F))

Schnorr Signature
• Generator g of prime order q group
• Public/private key pair: (K=gk, k)

Signer Verifier

Commitment

Challenge

Response

V=gv

r = (v – kc)

c = H(M|V)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

= gv-kcgkc = gv = V

V

c

r

Collective Signing

● Goal: collective signing with N signers
– Strawman: everyone produces a signature

– N signers-> N signatures -> N verifications

– Bad if we have thousands of signers

● Better choice: multisignatures

Schnorr Multisignature
• Key pairs: (K1=gk1, k1) and (K2=gk2, k2)

Signer 1 Verifier

Commitment

Challenge

Response

V1=gv1

r1 = (v1 – k1c)

c = H(M|V1)

Commitment recovery

Challenge recovery

Decision

V' = grKc

c’ = H(M|V’)

c’ = c ?

Signature on M: (c, r)

V1

c

r1

c = H(M|V)

V2

r2

Signer 2

r2 = (v2 – k2c)

V2=gv2

c

Signature on M: (c, r1)

K=K1*K2

V=V1*V2

r=r1+r2

Same signature!

Same verification!
Done once!

K3, PK{k3 | K3=gk3}
K3 = K3

CoSi Protocol Setup

Merkle tree containing:

● Public keys Ki
(discrete-log)

● Self-signed Certificates

● Aggregate keys Ki

O(n) one-time verify cost
O(|n'-n|) group change

K4, PK{k4 | K4=gk4}
K4 = K4

K2, PK{k2 | K2=gk2}
K2 = K2K3K4

K1, PK{k1 | K1=gk1}
K1 = K1K2...KN

CoSi Protocol Rounds

1. Announcement Phase

2. Commitment Phase

3. Challenge Phase

4. Response Phase

V3 = gv3,
V3 = V3

CoSi Commit Phase

Merkle tree containing:

● Commits Vi

● Aggregate
commits Vi

Collective challenge c
is root hash of
per-round
Merkle tree

V4 = gv4,
V4 = V4

V2 = gv2,
V2 = V2V3V4

V1 = gv1,
V1 = V1V2...VN

Challenge
c = H()

r3 = v3 - k3c,
r3 = r3

CoSi Response Phase

Compute

● Responses ri

● Aggregate
responses ri

Each (c,ri) forms
valid partial signature

(c,r1) forms
complete
signature r4 = v4 - k4c,

r4 = r4

r2 = v2 - k2c,
r2 = r2+r3+r4

r1 = v1 - k1c,
r1 = r1+r2+...+rN

The Availability Challenge

Assume server failures are rare but non-negligible
● Availability loss, DoS vulnerability if not addressed

● But persistently bad servers administratively booted

Two approaches:

● Exceptions – currently implemented, working

● Life Insurance – partially implemented, in-progress

Simple Solution: Exceptions
• If node A fails, remaining nodes create signature
• For a modified collective key: K’= K * K-1A

• Using a modified commitment: V’= V * V-1A

• And modified response: r’= r – rA

• Client gets a signature under K’ along with
exception metadata eA

• eA also lists conditions under which it was issued

• Client accepts only if a quorum of nodes maintained

Implementation

● Prototype implementation in Go available
– https://github.com/DeDiS/cothority

● Performance/scalability testing on DeterLab
– Up to 8192 virtual CoSi nodes on 64 physical hosts

– Latency: 100ms roundtrip between two servers

● Preliminary integration into Google CT log server
– Log server initiates collective signing for STHs,

insert collective signature into STH extension field

– Assumes clients fetch, check STH inclusion proofs
(but that's “coming soon” anyway, right?)

https://github.com/DeDiS/cothority

Results: Collective Signing Time

Results: Computation Cost

Current Issues and Limitations
CT integration: STH extension semantics

● SthExtensions “covered” by log's signature,
but collective signature can't “sign itself”
– Quick/easy workaround: just collectively sign STH

identical except for absence of collective signature

– But for future, consider class of STH extensions
explicitly not covered by conventional signature?

Other current (fixable) limitations

● Tree is more “baked-in” than it should be

● Gaps in both code and documentation

Software Update Scenario

Alice, traveling in Tyrannia, is offered a
software update for her favorite app

● Claims to be “latest version” - but is it?

● Rex's firewall might inject authentic
but outdated, now exploitable version

● If Alice accepts, she is instantly Pwned;
retroactive transparency won't help!

Alice

Timestamping Cothority

Like classic digital timestamp services,
only decentralized.

● Each round (e.g., 10 secs):
1) Each server collects hashes, nonces to timestamp

2) Each server aggregates hashes into Merkle tree

3) Servers aggregate local trees into one global tree

4) Servers collectively sign root of global tree

5) Server give signed root + inclusion proof to clients

● Clients verify signature + Merkle inclusion proof

Verifiably Fresh Software Updates
Alice accepts only updates with fresh timestamp:

● Knows update can't be an outdated version:
tree contains inclusion proof of her nonce

● Knows update can't have targeted backdoor:
witness cothority ensures many parties saw it

Fresh Update
Authority

Witnesses

Alice

Software Update

Merkle
Tree

Alice's
nonce

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Our Solution
	Slide 14
	CoSi Crypto Primitives
	Merkle Trees
	Schnorr Signature
	Collective Signing
	Schnorr Multisignature
	Slide 20
	CoSi Protocol
	Slide 22
	Slide 23
	Exceptions
	Slide 25
	Implementation
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

