SCTP Tail Loss Recovery Enhancements

SCTP TLR

draft-nielsen-tsvwg-sctp-tlr-02.txt

K. Nielsen, A. Brunström, R. de Santis, M. Tuexen, R. Stewart

Tsvwg, IETF 94, Yokohama
SCTP TLR Background

• Goal of SCTP TLR: Reduce latency while scaling throughput

• Legacy SCTP Fast Recovery (FR) not able to adequately or timely repair losses in tails of flows
• Result is lengthy Loss Recovery by T3-timeout, detrimental to performance
• SCTP TLR is
 • New Systematic Approach to Timer Driven Loss Recovery that extends, embeds and replaces a number of prior special purpose approaches: TCP TLP [1], TCP TLPR [4], SCTP/TCP Early Retransmission RFC5827, SCTP/TCP RTO Restart, FACK, ..
 • Pt. supplements Existing RFC4960 Fast Recovery
 • Evolved from TCP TLP[1]. Might evolve aside TCP RACK and QUIC
 • Ver 01 presented at tsvwg IETF90, IETF91
SCTP TLR - Simplified View

• Timer Based Loss Detection and FR
 TSN declared lost when
 SACK of higher TSN has arrived &
 time $\geq 1.5\text{RTT}$ since TSN sent

• Timer Restart Principles
 Timer reset as Timer-Time_TSN_latest_sent

• Elimination of "unnecessary" Delay_ack
 SCTP I-bit eliminates unnecessary delays
PTO Timer Driven Loss Detection

- SACK of higher TSN & PTO time elapsed \rightarrow Enter FR
- PTO Timer driven Tail Loss Probing (insp. TCP TLP [1])
 - TLProbe Packet (TLPP) sent if no SACK within PTO
 - Loss Demasking as from TCP TLP [1] applied to SCTP
Tail Loss Improvements of FR & Timer Driven Loss Detection within FR

• **TCP RFC6675 Tail Loss improved SCTP FR**
 - RFC6675 Last Resort features added to SCTP FR
 • Nextseq 3): If SACK of higher TSN received → allow to FR
 • Nextseq 4): Rescue of FR Tail → FR of Exit Point for SACK to drive FR
 - RFC6675 mis-indication from content of SACK, not number of SACKs

• **Timer Driven Loss Detection during SCTP FR**
 - TSNs classified as lost and expelled from flight size during Fast Recovery when: $T_{\text{latest}}(TSN) > PTO$ & SACK of higher TSN
 • NB: RFC6675 Nextseq 3) counts twice in flight size and sent after new data only. SCTP CC is standard RFC5681/RFC6675
SCTP TLR Timers

• **PTO timers**

 PTO1 = 1.5 SRTT + MAX(RTTVAR, Delay_ack)

 PTO2 = 1.5 SRTT + RTTVAR

• **PTO timer restart:** PTO reset as: PTO-Time_TSN_latest_sent
 (except when PTO ”not trusted”)

[OPEN]

• **SACK frequency dependency, No special re-ordering awareness,**
 Freshness (fresh RTT feed)

• **T3 timer restart:** T3 timer during FR and T3-Recovery set as:

 RTO-Time_TSN_latest_sent
• Elimination of Delay_ack latency
 – TLPP and RFC6675 Rescue sent with I-bit = Immediate SACK-bit
 – PTO2 timer used when I-bit set and peer complies with RFC7053

Not added in tests (yet) (Not strictly speaking TLR related):
 • I-bit on first RTX packet after T3-timeout ✓
 • I-bit on last packet (RTX only?) prior to CWND limitation, other. [Open]
Two Way Completion Time
Tails of 6 Packets

RTO_MIN=200 Msecs, Delay_Ack=40msecs, RTT=10 msecs
Two Way Completion Time
Tails of 6 Packets

RTO_MIN=200 Msecs, Delay_Ack=40msecs
Results SCTP Single Homing

- Diameter Signalling Traffic Profile

MSUsize=4500, MSU/s=10, RTT=10, PLR=0.8ge, sh
Results SCTP Single Homing

- SGaAP Signalling Traffic Profile

MSUsize=156, MSU/s=10, RTT=10, PLR=0.8ge, sh
Results SCTP Single Homing

MSUsize=22500, MSU/s=2, RTT=10, PLR=0.8ge, sh

Accum Latency Distrib [%]

Message Latency Time [ms]

TLR
6675
4960

T3-Timeouts 31030 31510 2413
FR-Entry-4960 61078 62719 24788
FR-Entry-6675 0 991 387
FR-Entry-TLR 0 0 51708
TLPP Sent 0 0 62480
Spurious RTX 9900 10131 29108
SCTP TLR for Multi Homing

• Is SCTP TLR always good for SCTP MH?
 – Better to get a T3 and go use alternate path w/ slow start from IW=4?

• Results for signaling profiles:
 – With equal path characteristic SCTP TLR better or equal to RFC4960
 – FR CC on existing path and slow start CC on alternative path equally adequate/cannot outweigh T3-timeout latency
 – Slow Start CC on alternate path amends T3-timeout latency
 • But here RFC4960 observed to result in more spuriously retransmitted data than SCTP TLR

• Results likely to change with differences in the path characteristics/traffic. More testing to be done…
MSU size 22500, MSU/s=2, RTT=10, PLR=0.8

Equiv number of spurious RTX

SCTP MH

MSU size 4500, MSU/s=10, RTT=100, PLR=0.8

Spurious RTXs Increased by factor of 40!

SCTP MH

SCTP SH
SCTP TLR and new SACK

• Proposed **Unambiguious SACK** for SCTP
 – See Appendix of draft-nielsen-tsvwg-sctp-tlr-02.txt
 – Usage for SCTP TLR in bulk of draft-nielsen-tsvwg-sctp-tlr-02.txt

• Enable SCTP sender to distinguish SACK of original transmission and retransmission:
 – Accurate - RTT measurements, - Loss Detection, - CWND Management, - MH management

• **NOT IMPLEMENTED (YET)**
 – Format to be evaluated.
 – Also?
 • Potentially add DELAY_ACK setting, SACK frequency (perhaps), delay of highest SACK’ed TSN (compare/from QUIC)
Status and NEXT Steps

- Implementation of new SCTP TLR improvements in Ericsson SCTP SW in progress
 - “RFC6675” parts are running in deployment
- Specification and design is work in progress. Present version:
 - Draft-nielsen-tsvwg-sctp-tlr-02.txt
 - Includes MH&SH operation
- More consolidation needed before asking for adoption for standardisation by IETF
QUESTIONS
References

