Network Working Group J. Dong Internet-Draft M. Chen Intended status: Standards Track Huawei Technologies Expires: June 5, 2016 H. Gredler Individual Contributor S. Previdi Cisco Systems, Inc. J. Tantsura Ericsson December 3, 2015 Distribution of MPLS Traffic Engineering (TE) LSP State using BGP draft-ietf-idr-te-lsp-distribution-04 Abstract This document describes a mechanism to collect the Traffic Engineering (TE) LSP information using BGP. Such information can be used by external components for path reoptimization, service placement, and network visualization. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on June 5, 2016. Dong, et al. Expires June 5, 2016 [Page 1] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 Copyright Notice Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Carrying LSP State Information in BGP . . . . . . . . . . . . 4 2.1. MPLS TE LSP Information . . . . . . . . . . . . . . . . . 4 2.2. IPv4/IPv6 MPLS TE LSP NLRI . . . . . . . . . . . . . . . 5 2.2.1. MPLS TE LSP Descriptors . . . . . . . . . . . . . . . 6 2.3. LSP State Information . . . . . . . . . . . . . . . . . . 8 2.3.1. RSVP Objects . . . . . . . . . . . . . . . . . . . . 10 2.3.2. PCE Objects . . . . . . . . . . . . . . . . . . . . . 11 2.3.3. SR Encap TLVs . . . . . . . . . . . . . . . . . . . . 11 3. Operational Considerations . . . . . . . . . . . . . . . . . 12 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 4.1. BGP-LS NLRI-Types . . . . . . . . . . . . . . . . . . . . 12 4.2. BGP-LS Protocol-IDs . . . . . . . . . . . . . . . . . . . 12 4.3. BGP-LS Descriptors TLVs . . . . . . . . . . . . . . . . . 13 4.4. BGP-LS LSP-State TLV Protocol Origin . . . . . . . . . . 13 5. Security Considerations . . . . . . . . . . . . . . . . . . . 14 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 7.1. Normative References . . . . . . . . . . . . . . . . . . 14 7.2. Informative References . . . . . . . . . . . . . . . . . 15 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16 1. Introduction In some network environments, the state of established Multi-Protocol Label Switching (MPLS) Traffic Engineering (TE) Label Switched Paths (LSPs) and Tunnels in the network are required by components external to the network domain. Usually this information is directly maintained by the ingress Label Edge Routers (LERs) of the MPLS TE LSPs. Dong, et al. Expires June 5, 2016 [Page 2] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 One example of using the LSP information is stateful Path Computation Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide benefits in path reoptimization. While some extensions are proposed in Path Computation Element Communication Protocol (PCEP) for the Path Computation Clients (PCCs) to report the LSP states to the PCE, this mechanism may not be applicable in a management-based PCE architecture as specified in section 5.5 of [RFC4655]. As illustrated in the figure below, the PCC is not an LSR in the routing domain, thus the head-end nodes of the TE-LSPs may not implement the PCEP protocol. In this case a general mechanism to collect the TE- LSP states from the ingress LERs is needed. This document proposes an LSP state collection mechanism complementary to the mechanism defined in [I-D.ietf-pce-stateful-pce]. ----------- | ----- | Service | | TED |<-+-----------> Request | ----- | TED synchronization | | | | mechanism (for example, v | | | routing protocol) ------------- Request/ | v | | | Response| ----- | | NMS |<--------+> | PCE | | | | | ----- | ------------- ----------- Service | Request | v ---------- Signaling ---------- | Head-End | Protocol | Adjacent | | Node |<---------->| Node | ---------- ---------- Figure 1. Management-Based PCE Usage In networks with composite PCE nodes as specified in section 5.1 of [RFC4655], PCE is implemented on several routers in the network, and the PCCs in the network can use the mechanism described in [I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE nodes. An external component may also need to collect the LSP information from all the PCEs in the network to obtain a global view of the LSP state in the network. In multi-area or multi-AS scenarios, each area or AS can have a child PCE to collect the LSP state in its own domain, in addition, a parent PCE needs to collect LSP information from multiple child PCEs to obtain a global view of LSPs inside and across the domains involved. Dong, et al. Expires June 5, 2016 [Page 3] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 In another network scenario, a centralized controller is used for service placement. Obtaining the TE LSP state information is quite important for making appropriate service placement decisions with the purpose to both meet the application's requirements and utilize network resources efficiently. The Network Management System (NMS) may need to provide global visibility of the TE LSPs in the network as part of the network visualization function. BGP has been extended to distribute link-state and traffic engineering information to external components [I-D.ietf-idr-ls-distribution]. Using the same protocol to collect TE LSP information is desirable for these external components since this avoids introducing multiple protocols for network information collection. This document describes a mechanism to distribute TE LSP information to external components using BGP. 2. Carrying LSP State Information in BGP 2.1. MPLS TE LSP Information The MPLS TE LSP information is advertised in BGP UPDATE messages using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes [RFC4760]. The "Link-State NLRI" defined in [I-D.ietf-idr-ls-distribution] is extended to carry the MPLS TE LSP information. BGP speakers that wish to exchange MPLS TE LSP information MUST use the BGP Multiprotocol Extensions Capability Code (1) to advertise the corresponding (AFI, SAFI) pair, as specified in [RFC4760]. The format of "Link-State NLRI" is defined in [I-D.ietf-idr-ls-distribution]. A new "NLRI Type" is defined for MPLS TE LSP Information as following: o NLRI Type: IPv4/IPv6 MPLS TE LSP NLRI (suggested codepoint value 5, to be assigned by IANA). [I-D.ietf-idr-ls-distribution] defines the BGP-LS NLRI as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NLRI Type | Total NLRI Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | // Link-State NLRI (variable) // | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Dong, et al. Expires June 5, 2016 [Page 4] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 This document defines a new NLRI-Type and its format: the IPv4/IPv6 MPLS TE LSP NLRI defined in the following section. 2.2. IPv4/IPv6 MPLS TE LSP NLRI The IPv4/IPv6 MPLS TE LSP NLRI (NLRI Type 5. Suggested value, to be assigned by IANA) is shown in the following figure: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+ | Protocol-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identifier | | (64 bits) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // MPLS TE LSP Descriptors (variable) // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Protocol-ID field specifies the type of signaling of the MPLS TE LSP. The following Protocol-IDs are defined (suggested values, to be assigned by IANA) and apply to the IPv4/IPv6 MPLS TE LSP NLRI: +-------------+----------------------------------+ | Protocol-ID | NLRI information source protocol | +-------------+----------------------------------+ | 7 | RSVP-TE | | 8 | Segment Routing | +-------------+----------------------------------+ o "Identifier" is an 8 octet value as defined in [I-D.ietf-idr-ls-distribution]. o Following MPLS TE LSP Descriptors are defined: +-----------+----------------------------------+ | Codepoint | Descriptor TLV | +-----------+----------------------------------+ | 267 | Tunnel ID | | 268 | LSP ID | | 269 | IPv4/6 Tunnel Head-end address | | 270 | IPv4/6 Tunnel Tail-end address | | 271 | SR-ENCAP Identifier | +-----------+----------------------------------+ Dong, et al. Expires June 5, 2016 [Page 5] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 2.2.1. MPLS TE LSP Descriptors This sections defines the MPLS TE Descriptors TLVs. 2.2.1.1. Tunnel Identifier (Tunnel ID) The Tunnel Identifier TLV contains the Tunnel ID defined in [RFC3209] and has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tunnel ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Type: To be assigned by IANA (suggested value: 267) o Length: 2 octets. o Tunnel ID: 2 octets as defined in [RFC3209]. 2.2.1.2. LSP Identifier (LSP ID) The LSP Identifier TLV contains the LSP ID defined in [RFC3209] and has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LSP ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Type: To be assigned by IANA (suggested value: 268) o Length: 2 octets. o LSP ID: 2 octets as defined in [RFC3209]. Dong, et al. Expires June 5, 2016 [Page 6] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 2.2.1.3. IPv4/IPv6 Tunnel Head-End Address The IPv4/IPv6 Tunnel Head-End Address TLV contains the Tunnel Head- End Address defined in [RFC3209] and has following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // IPv4/IPv6 Tunnel Head-End Address (variable) // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Type: To be assigned by IANA (suggested value: 269) o Length: 4 or 16 octets. When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv4 address, its length is 4 (octets). When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv6 address, its length is 16 (octets). 2.2.1.4. IPv4/IPv6 Tunnel Tail-End Address The IPv4/IPv6 Tunnel Tail-End Address TLV contains the Tunnel Tail- End Address defined in [RFC3209] and has following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // IPv4/IPv6 Tunnel Tail-End Address (variable) // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Type: To be assigned by IANA (suggested value: 270) o Length: 4 or 16 octets. When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv4 address, its length is 4 (octets). Dong, et al. Expires June 5, 2016 [Page 7] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv6 address, its length is 16 (octets). 2.2.1.5. SR-Encap TLV The SR-ENCAP TLV contains the Identifier defined in [I-D.sreekantiah-idr-segment-routing-te] and has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SR-ENCAP Identifier | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where: o Type: To be assigned by IANA (suggested value: 271) o Length: 4 octets. o SR-ENCAP Identifier: 4 octets as defined in [I-D.sreekantiah-idr-segment-routing-te]. 2.3. LSP State Information A new TLV called "LSP State TLV" (codepoint to be assigned by IANA), is used to describe the characteristics of the MPLS TE LSPs, which is carried in the optional non-transitive BGP Attribute "LINK_STATE Attribute" defined in [I-D.ietf-idr-ls-distribution]. These MPLS TE LSP characteristics include the switching technology of the LSP, Quality of Service (QoS) parameters, route information, the protection mechanisms, etc. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | // LSP State Information (variable) // | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ LSP State TLV Dong, et al. Expires June 5, 2016 [Page 8] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 Type: Suggested value 1158 (to be assigned by IANA) LSP State Information: Consists of a set of TE-LSP objects as defined in [RFC3209],[RFC3473] and [RFC5440]. Rather than replicating all MPLS TE LSP related objects in this document, the semantics and encodings of the MPLS TE LSP objects are reused. These MPLS TE LSP objects are carried in the "LSP State Information" with the following format. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Protocol-Origin| Reserved | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | // Protocol specific TE-LSP object // | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ LSP State Information The Protocol-Origin field identifies the protocol from which the contained MPLS TE LSP object originated. This allows for MPLS TE LSP objects defined in different protocols to be collected while avoiding the possible code collisions among these protocols. Three Protocol- Origins are defined in this document (suggested values, to be assigned by IANA) +----------+--------------+ | Protocol | LSP Object | | Origin | Origin | +----------+--------------+ | 1 | RSVP-TE | | 2 | PCE | | 3 | SR ENCAP | +----------+--------------+ The 8-bit Reserved field SHOULD be set to 0 on transmission and ignored on receipt. The Length field is set to the Length of the value field, which is the total length of the contained MPLS TE LSP object. The Valued field is a MPLS-TE LSP object which is defined in the protocol identified by the Protocol-Origin field. Dong, et al. Expires June 5, 2016 [Page 9] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 2.3.1. RSVP Objects RSVP-TE objects are encoded in the "Value" field of the LSP State TLV and consists of MPLS TE LSP objects defined in RSVP-TE [RFC3209] [RFC3473]. Rather than replicating all MPLS TE LSP related objects in this document, the semantics and encodings of the MPLS TE LSP objects are re-used. These MPLS TE LSP objects are carried in the LSP State TLV. When carrying RSVP-TE objects, the "Protocol-Origin" field is set to "RSVP-TE" (suggested value 1, to be assigned by IANA). The following RSVP-TE Objects are defined: o SENDER_TSPEC and FLOW_SPEC [RFC2205] o SESSION_ATTRIBUTE [RFC3209] o EXPLICIT_ROUTE Object (ERO) [RFC3209] o ROUTE_RECORD Object (RRO) [RFC3209] o FAST_REROUTE Object [RFC4090] o DETOUR Object [RFC4090] o EXCLUDE_ROUTE Object (XRO) [RFC4874] o SECONDARY_EXPLICIT_ROUTE Object (SERO) [RFC4873] o SECONDARY_RECORD_ROUTE (SRRO) [RFC4873] o LSP_ATTRIBUTES Object [RFC5420] o LSP_REQUIRED_ATTRIBUTES Object [RFC5420] o PROTECTION Object [RFC3473][RFC4872][RFC4873] o ASSOCIATION Object [RFC4872] o PRIMARY_PATH_ROUTE Object [RFC4872] o ADMIN_STATUS Object [RFC3473] o LABEL_REQUEST Object [RFC3209][RFC3473] For the MPLS TE LSP Objects listed above, the corresponding sub- objects are also applicable to this mechanism. Note that this list Dong, et al. Expires June 5, 2016 [Page 10] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 is not exhaustive, other MPLS TE LSP objects which reflect specific characteristics of the MPLS TE LSP can also be carried in the LSP state TLV. 2.3.2. PCE Objects PCE objects are encoded in the "Value" field of the MPLS TE LSP State TLV and consists of PCE objects defined in [RFC5440]. Rather than replicating all MPLS TE LSP related objects in this document, the semantics and encodings of the MPLS TE LSP objects are re-used. These MPLS TE LSP objects are carried in the LSP State TLV. When carrying PCE objects, the "Protocol-Origin" field is set to "PCE" (suggested value 2, to be assigned by IANA). The following PCE Objects are defined: o METRIC Object [RFC5440] o BANDWIDTH Object [RFC5440] For the MPLS TE LSP Objects listed above, the corresponding sub- objects are also applicable to this mechanism. Note that this list is not exhaustive, other MPLS TE LSP objects which reflect specific characteristics of the MPLS TE LSP can also be carried in the LSP state TLV. 2.3.3. SR Encap TLVs SR-ENCAP objects are encoded in the "Value" field of the LSP State TLV and consists of SR-ENCAP objects defined in [I-D.sreekantiah-idr-segment-routing-te]. Rather than replicating all MPLS TE LSP related objects in this document, the semantics and encodings of the MPLS TE LSP objects are re-used. These MPLS TE LSP objects are carried in the LSP State TLV. When carrying SR-ENCAP objects, the "Protocol-Origin" field is set to "SR-ENCAP" (suggested value 3, to be assigned by IANA). The following SR-ENCAP Objects are defined: o ERO TLV [I-D.sreekantiah-idr-segment-routing-te] o Weight TLV [I-D.sreekantiah-idr-segment-routing-te] o Binding SID TLV [I-D.sreekantiah-idr-segment-routing-te] Dong, et al. Expires June 5, 2016 [Page 11] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 For the MPLS TE LSP Objects listed above, the corresponding sub- objects are also applicable to this mechanism. Note that this list is not exhaustive, other MPLS TE LSP objects which reflect specific characteristics of the MPLS TE LSP can also be carried in the LSP state TLV. 3. Operational Considerations The Existing BGP operational procedures apply to this document. No new operation procedures are defined in this document. The operational considerations as specified in [I-D.ietf-idr-ls-distribution] apply to this document. In general the ingress nodes of the MPLS TE LSPs are responsible for the distribution of LSP state information, while other nodes on the LSP path MAY report the LSP information when needed. For example, the border routers in the inter-domain case will also distribute LSP state information since the ingress node may not have the complete information for the end-to-end path. 4. IANA Considerations This document requires new IANA assigned codepoints. 4.1. BGP-LS NLRI-Types IANA maintains a registry called "Border Gateway Protocol - Link State (BGP-LS) Parameters" with a sub-registry called "BGP-LS NLRI- Types". The following codepoints is suggested (to be assigned by IANA): +------+----------------------------+---------------+ | Type | NLRI Type | Reference | +------+----------------------------+---------------+ | 5 | IPv4/IPv6 MPLS TE LSP NLRI | this document | +------+----------------------------+---------------+ 4.2. BGP-LS Protocol-IDs IANA maintains a registry called "Border Gateway Protocol - Link State (BGP-LS) Parameters" with a sub-registry called "BGP-LS Protocol-IDs". The following Protocol-ID codepoints are suggested (to be assigned by IANA): Dong, et al. Expires June 5, 2016 [Page 12] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 +-------------+----------------------------------+---------------+ | Protocol-ID | NLRI information source protocol | Reference | +-------------+----------------------------------+---------------+ | 7 | RSVP-TE | this document | | 8 | Segment Routing | this document | +-------------+----------------------------------+---------------+ 4.3. BGP-LS Descriptors TLVs IANA maintains a registry called "Border Gateway Protocol - Link State (BGP-LS) Parameters" with a sub-registry called "Node Anchor, Link Descriptor and Link Attribute TLVs". The following TLV codepoints are suggested (to be assigned by IANA): +----------+--------------------------------------+---------------+ | TLV Code | Description | Value defined | | Point | | in | +----------+--------------------------------------+---------------+ | 1158 | LSP State TLV | this document | | 267 | Tunnel ID TLV | this document | | 268 | LSP ID TLV | this document | | 269 | IPv4/6 Tunnel Head-end address TLV | this document | | 270 | IPv4/6 Tunnel Tail-end address TLV | this document | | 271 | SR-ENCAP Identifier TLV | this document | +----------+--------------------------------------+---------------+ 4.4. BGP-LS LSP-State TLV Protocol Origin This document requests IANA to maintain a new sub-registry under "Border Gateway Protocol - Link State (BGP-LS) Parameters". The new registry is called "Protocol Origin" and contains the codepoints allocated to the "Protocol Origin" field defined in Section 2.3. The registry contains the following codepoints (suggested values, to be assigned by IANA): +----------+--------------+ | Protocol | Description | | Origin | | +----------+--------------+ | 1 | RSVP-TE | | 2 | PCE | | 3 | SR-ENCAP | +----------+--------------+ Dong, et al. Expires June 5, 2016 [Page 13] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 5. Security Considerations Procedures and protocol extensions defined in this document do not affect the BGP security model. See [RFC6952] for details. 6. Acknowledgements The authors would like to thank Dhruv Dhody, Mohammed Abdul Aziz Khalid, Lou Berger, Acee Lindem, Siva Sivabalan and Arjun Sreekantiah for their review and valuable comments. 7. References 7.1. Normative References [I-D.ietf-idr-ls-distribution] Gredler, H., Medved, J., Previdi, S., Farrel, A., and S. Ray, "North-Bound Distribution of Link-State and TE Information using BGP", draft-ietf-idr-ls-distribution-13 (work in progress), October 2015. [I-D.sreekantiah-idr-segment-routing-te] Sreekantiah, A., Filsfils, C., Previdi, S., Sivabalan, S., Mattes, P., and J. Marcon, "Segment Routing Traffic Engineering Policy using BGP", draft-sreekantiah-idr- segment-routing-te-00 (work in progress), October 2015. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, DOI 10.17487/RFC2205, September 1997, . [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, . [RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions", RFC 3473, DOI 10.17487/RFC3473, January 2003, . Dong, et al. Expires June 5, 2016 [Page 14] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 [RFC4090] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090, DOI 10.17487/RFC4090, May 2005, . [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, "Multiprotocol Extensions for BGP-4", RFC 4760, DOI 10.17487/RFC4760, January 2007, . [RFC4872] Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou, Ed., "RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007, . [RFC4873] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel, "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873, May 2007, . [RFC4874] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874, April 2007, . [RFC5420] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A. Ayyangarps, "Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420, February 2009, . [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, . 7.2. Informative References [I-D.ietf-pce-stateful-pce] Crabbe, E., Minei, I., Medved, J., and R. Varga, "PCEP Extensions for Stateful PCE", draft-ietf-pce-stateful- pce-13 (work in progress), December 2015. [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, DOI 10.17487/RFC4655, August 2006, . Dong, et al. Expires June 5, 2016 [Page 15] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, . Authors' Addresses Jie Dong Huawei Technologies Huawei Campus, No. 156 Beiqing Rd. Beijing 100095 China Email: jie.dong@huawei.com Mach(Guoyi) Chen Huawei Technologies Huawei Campus, No. 156 Beiqing Rd. Beijing 100095 China Email: mach.chen@huawei.com Hannes Gredler Individual Contributor Austria Email: hannes@gredler.at Stefano Previdi Cisco Systems, Inc. Via Del Serafico, 200 Rome 00142 Italy Email: sprevidi@cisco.com Dong, et al. Expires June 5, 2016 [Page 16] Internet-Draft MPLS TE LSP State Distribution using BGP December 2015 Jeff Tantsura Ericsson 300 Holger Way San Jose, CA 95134 US Email: jeff.tantsura@ericsson.com Dong, et al. Expires June 5, 2016 [Page 17]