Transmission of IPv6 Packets over Near Field Communication

draft-ietf-6lo-nfc-03

Y-G. Hong, Y-H. Choi (ETRI), J-S. Youn (DONG-EUI Univ.), D-K. Kim (KNU) J-H. Choi (Samsung)

6lo WG Meeting@IETF 95 – Buenos Aires, Argentina 2016. 4. 7.

What is Near Field Communication (NFC) ?

• NFC technology enables (Source: NFC Forum)

• simple and safe two-way interactions between electronic devices, allowing consumers to perform contactless transactions, access digital content, and connect electronic devices with a single touch.

• NFC Functions

(Source: NFC forum)

History and status

- <u>WG document: draft-ietf-6lo-nfc-00</u> (Mar 03, 2015)
 - Update Stateless address autoconfiguration (RFC7136)

• 1st Revision: draft-ietf-6lo-nfc-01 (July 05, 2015)

- MAC PDU size and MTU
- SLAAC and IPv6 link local address
- Fragmentation and Reassembly

• 2nd Revision: draft-ietf-6lo-nfc-02 (Oct. 17, 2015)

- Dispatch Header (added)
- Header Compression (modified for GHC)

• <u>3rd Revision : draft-ietf-6lo-nfc-03</u> (Apr. 07, 2016)

- Some typos fixed
- Section 7. Security Considerations

Updates Since the IETF 94 (1/3)

7. Security Considerations

- Various Threats
 - correlation of activities over time, location tracking, device-specific vulnerability exploitation, and address scanning
 - From the I-D., draft-ietf-6lo-privacy-considerations-00 (D. Thaler)
- NFC technology uses IPv6 IIDs
 - formed from "Short Address"
 - a set of well-known constant bits (such as padding with '0's)
 - for the modified EUI-64 format

 \rightarrow Thus, it is exposed from the various threats

Updates Since the IETF 94 (2/3)

7. Security Considerations (cont'd)

- However, NFC technology
 - is operated **single touch-based** approaches (This means extremely short-lived links)

- \rightarrow This mitigates the threats of correlation of activities over time.
- IPv6-over-NFC will be *(see the bellow figure in use cases)*
 - NOT used for big size data transfer or multimedia streaming (long-lived links), BUT used for **ID verification and mobile payment** (extremely short-lived

Updates Since the IETF 94 (3/3)

7. Security Considerations (cont'd)

- The 6-bit short address of NFC link layer is not generated as a physically permanent value but logically generated value for each connection
- Every single touch connection can use a different short address of NFC link with an extremely short-lived link
- → This can mitigate address scanning as well as location tracking and device-specific vulnerability exploitation.

Others

- 1ST ETSI 6lo plugtests
 - in Yokohama (Japan), IETF 94
 - A testbed between two different NFC-enabled devices
 - Intel Edison board (Yacto Linux 3.10.17)
 - Laptop PC (Fedora, Linux kernel 4.0.4)
 - Results
 - 2/12 test items (passed) in the test description

- for IPv6 over NFC.
- NOT only Node-to-Node mode but also Node-to-Router mode in next plugtest

• Informing the NFC Forum

- Email response from Paula Hunter (NFC Forum Executive Director) (Oct.6.2015)
- And, we will participate in the NFC Forum Member Meeting
 - June 2016, Dallas, TX, USA
 - to inform them of the work item, "IPv6-over-NFC"

Next Steps

• Ready for WGLC?

• Implementations & 2nd ETSI 6lo plugtests in Berlin

- A testbed between two different NFC-enabled devices
 - Intel Edison board (Yacto Linux 3.10.17)
 - Laptop PC (Fedora, Linux kernel 4.0.4)
- Further considerations
 - IID redundancy based on 6 bits of NFC Node ID
 - NOT support for MTU extension in NFC PN532 chipset (partially resolved)
 - Implementations for MAC procedures in ND functionality