Lo/La A Loss/Latency Tradeoff Bit

draft-you-tsvwg-latency-loss-tradeoff ACCORD BoF – Thursday 7 April 2016 IETF 95 – Buenos Aires, Argentina Brian Trammell

Why?

- Most networks built/configured to minimize loss.
- Some transports/apps more sensitive to latency.

- Current approach: guess which traffic is which.
- Proposal: have source tag packets as explicitly preferring loss to latency, or vice-versa.

DSCP in Review

- Six bits in the IP header (4-9 in v6, 8-13 in v4) to allow classification of traffic for per-hop QoS:
 - Default: best-effort traffic
 - Class Selector: simple priority, backward-compatible with old IPv4 TOS byte
 - Expedited Forwarding (EF): low loss, low delay, low jitter, implemented w/priority queue
 - Voice Admit: EF with admission control
 - Assured Forwarding (AF): bandwidth-limited forwarding guarantee, four classes, three drop probabilities

Issues with DSCP

- Incentive to lie means DSCP often gets bleached to "default" at network borders
 - AF needs configuration of limits per class
 - EF is a "very important packet" flag
 - Both can be used to disadvantage default traffic
- Internet deployment requires external consideration (contracts, payments, etc.)

Explicit Tradeoff

- Lo/La is based on an explicit tradeoff:
 - Lo: I prefer latency to loss
 - La: I prefer loss to latency
 - no incentive to lie
 - no incentive to bleach
- Alternate approach to making DSCP deployable
- General principle: declarative, tradeoff-based signaling (draft-trammell-stackevo-explicit-coop)

One implementation

- Two DSCP codepoints in Pool 3:
 - 0b000001 Lo: minimize loss at expense of latency
 - 0b000101 La: minimize latency at expense of loss
- Two queues at likely bottlenecks:
 - Short queue for Lo (handled as DF)
 - Extremely short queue for La
- Fast deployment possible:
 - queue selection based on DSCP is deployed today
 - specific codepoint cutouts for bleaching at border