RMCAT Feedback Requirements design team

RMCAT WG

Based on slides from Xiaoqing Zhu, Stefan Holmer, Ingemar Johansson and David Hayes

Introduction

- RMCAT congestion control candidate algorithms provided requirements on their feedback message.
- A design team will analysis the requirements and will find a generic format.

Please join the design team

Feedback Requirements of NADA

- Information needed in NADA feedback:
 - Recommended rate adaptation mode (rmode)
 - Aggregated congestion signal (x_curr)
 - Recently measured receiving rate (r_recv)
- Recommended feedback interval: 100ms

GCC – What we need

- Start-up phase:
 - Send time, arrival time and size of each packet to estimate bandwidth.
 - Congestion controller knowledge about the sender's intent is useful (e.g., if packets are sent in a pattern on purpose, etc.). This is easier to achieve at the sender.
- Congestion control phase:
 - Ability to determine packet groups based on both send time and arrival time of packets.
 - Send time, arrival time and size of each group to compute intergroup delay variations.
 - Packet loss.
- One instance operates on all BUNDLEd streams.
 - Need to identify and compare packets from these streams.

GCC – Suggested feedback

- Per-packet feedback from receiver to sender:
 - Packet identifier (e.g., new sequence number or {ssrc, rtp seq num} tuple).
 - Packet send time.
 - Packet arrival time.
 - Packet size.
- More frequent is better.
 - Current choice is to send feedback every 50 ms.
 - Increasing to 100 ms would be possible, the cost would be delayed actuation, possibly leading to increased queuing.
 - Cost of high feedback frequency results in fewer ACKs per RTCP, leading to (assuming) :
 - Reduced ability to compress the feedback.
 - More packet overhead per ACK (limited by RFC 5506).

SCReAM feedback format

- Required for SCReAM functionality:
 - Arrival timestamp : Arrival timestamp of highest received RTP sequence number
 - 32 bits, timestamp clock equal to RTP media timestamp clock
 - List of received RTP packets
- Optional , can enhance QoE:
 - ECN counter : ECN-CE counter value
 - Source quench bit, used to force sender to reduce sending rate

SCReAM Conclusions

- SCReAM feedback can be realized with RFC3611 for basic functionality
 - RFC6679 for ECN
- A future feedback format can however be useful
- Signaling interval ranges from 100-200ms at low media rates to 10-20ms at high bitrates
- Reduced size RTCP (RFC5506) is highly recommended.
 Full compound RTCP transmission controlled by trr-int.
- RFC4585 regular mode is OK,

SBD Feedback Requirements

- The mechanism needs to:
 - a) Compute summary statistics based on accurate and precise per packet relative One Way Delay (OWD) measurements.
 - b) Determine shared bottlenecks based on summary statistics.
- Three scenarios:
 - 1. Summary statistic calculations and SBD performed on senders.
 - 2. Summary statistic calculations performed on receivers, SBD on senders.
 - 3. Calculations and SBD performed on both senders and receivers (beyond current scope—allows cooperative detection of bottlenecks).

Feedback Requirements – Summary

Algorithm	Feedback		
NADA	Recommended rate adaptation mode (rmode) Could be calculated		
NADA	Aggregated congestion signal (x_curr) from info		
NADA	Recently measured receiving rate (r_recv)		
GCC	Packet identifier		
GCC	Packet arrival time } arrival time		
SCReAM	Arrival timestamp of highest received RTP sequence number		
SCReAM	List of received RTP packets		
SCReAM	ECN counter (optional)		
SCReAM	Source quench bit (optional)		
SBD (S1)	OWD measurements for every packet \rightarrow Or packet send and arrival time?		
SBD (S2, S3)	Summary statistics, initialization of summary statistics to be collected		
SBD (S3)	Bottleneck determinations		

Feedback Interval – Summary

• Tradeoff between overhead and responsiveness

Algorithm	Indicated Range	Recommended / used
NADA	20 ms – 400 ms	100 ms
GCC	50 ms – 100 ms	50 ms
SCReAM	100-200 ms (low bitrates) 10-20 ms (high bitrates)	
SBD		350 ms