Video Frame Info RTP Header Extension

draft-ietf-avtext-framemarking-01

Espen Berger, Suhas Nandakumar, Mo Zanaty (Cisco)

AVTEXT WG

IETF 95 – Buenos Aires, AR – April 7, 2016

Review: Main Motivation

Payload-Agnostic RTP Switch

- Payload may be encrypted
 - Avoid decryption cost to improve switch scale and latency
- Payload may be encrypted end-to-end
 - Impossible to decrypt / inspect payload without end-to-end keys
- Payload may be unknown format
 - Codec-agnostic switching can support any format, old or new

Review: More Motivations

Smarter RTP Switch

- Clean video switching at intra-frames
- Better recovery during packet loss
- Drop least important packets during congestion
- Drop scalable enhancement layers for constrained endpoints

A B RTP Switch C D

Smarter Endpoints

Better recovery during packet loss

Video Frame Info Extension

- S: Start of Frame MUST be 1 in the first packet in a frame within a layer.
- E: End of Frame MUST be 1 in the last packet in a frame within a layer.
- I: Independent Frame MUST be 1 for frames that can be decoded independent of prior frames, e.g. key/intra-frame; otherwise MUST be 0.
- D: Discardable Frame MUST be 1 for frames that can be dropped, and still provide a decodable media stream; otherwise MUST be 0.
- B: Base Layer Sync MUST be 1 if this frame only depends on the base layer; otherwise MUST be 0.
- TID: Temporal ID (3 bits) The base temporal quality starts with 0, and increases with 1 for each temporal layer/sub-layer.
- LID: Layer ID (8 bits) The spatial and quality layer ID defined by scalable codecs.

Layer ID Mappings

0	1	2	
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4	5 6 7 8 9 0 1 2 3	
+-+-+-+-+-+	-+-+-+-+-+-+		
ID=X L=1	S E I D B TII	0 0 LayerId	н.265
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+	
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+	
ID=X	S E I D B TII	O DID QID	H.264-SVC
		+-+-+-+-+-+-+-+	
		+-+-+-+-+-+-+-+	
			11 264 (3370)
·			H.264 (AVC)
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+	
		+-+-+-+-+-+-+	
ID=X L=1	S E I D B TII	0 0 0 0 0 0 0 0 0	VP8
+-+-+-+-+-+	-+-+-+-+-+-+-		
+-+-+-+-+-+	-+-+-+-+-+-+-+		
ID=X L=1	S E I D B TII	0 0 0 0 RS RQ	VP9
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+	

Open Issues: TLOPICIDX

Some comments proposed adding TLOPICIDX

- What is TLOPICIDX?
 - If TID=0, it is a running index of TID=0 frames.
 - If TID>0, it signals a dependency on only that TID=0 frame.
- How is it used?
 - After frame loss, it can be used to determine if dependencies are met for subsequently received frames so they can be forwarded by MANEs and rendered by endpoints.

TLOPICIDX

MRST and MRMT

 Frame loss in base layer is easy to detect by RTP SEQ gap, so no need for TLOPICIDX.

SRST

- Frame loss in base layer is easy to detect by RTP TS gap for fixed GOP and frame rate (e.g. VP9 SS non-flexible mode), so no need for TLOPICIDX.
- For variable GOP and frame rate (e.g. VP9 flexible mode), TLOPICIDX can be useful to signal dependencies.
- However, for complex variable GOPs, there is rarely a simple single dependency, so TLOPICIDX may be insufficient.

RECOMMENDATION

 Do not include TLOPICIDX, since simple, regular scalability structures can use SEQ/TS to infer dependencies, while complex, flexible modes likely need to express more complex dependencies than TLOPICIDX.