
DetNet Requirements on Data Plane and Control Plane

draft-zha-detnet-requirments-00

Yiyong Zha, Liang Geng

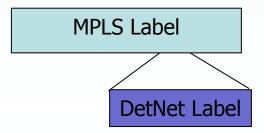
- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM

DetNet Architecture

DetNet Architecture

- Service Layer- Deploy DetNet service
 - Service model
- Control Plane manage DetNet network
 - Controller or protocols
 - Interfaces
- Data Plane manage devices
 - Multi-vendor NEs
 - Queuing, shaping, scheduling

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM


Use MPLS to Support DetNet

MPLS

Existing Layer-2.5 technique to support any network protocol

DetNet over MPLS

- Setup Label Switched Path (LSP) for DetNet flow with label definition and QoS mapping.
- Latency-aware LSP installment and removing
- Supporting Layer-2 techniques such as pseudowire
- Latency aware MPLS ?

Flow Identification

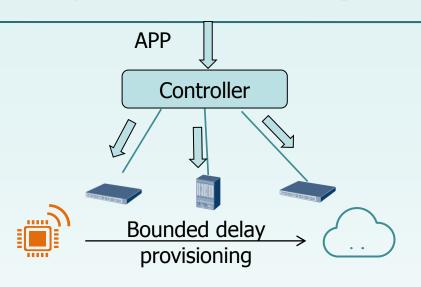
- How to differentiate DetNet from BE flow
 - Tuple matching approach (VLAN, MAC, Src) is not applicable
 - Do proxy or transformation
 - Unique flow ID in the network
- How to differentiate multiple delay requirements
 - QoS mapping mechanisms
 - Service model with delay information

Deterministic Forwarding

- TSN is good candidate
 - Frame preemption (IEEE 802.1Qbu)
 - Time aware shaping (IEEE 802.1Qbv)
- Standard queuing, shaping, transmission selection mechanisms
 - Also related to the southbound interface and configuration model

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM

Centralized or Distributed Control


Centralized

- Good for Deterministic service provisioning, OAM
- Existing SDN controller
- Lack of agility

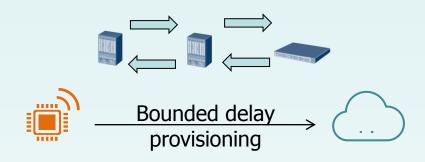
Distributed

- Peer-to-peer protocols to manage multiple devices
- Autonomic negotiation between NEs

Southbound/Northbound Interface

NBI: communications between Apps and controller

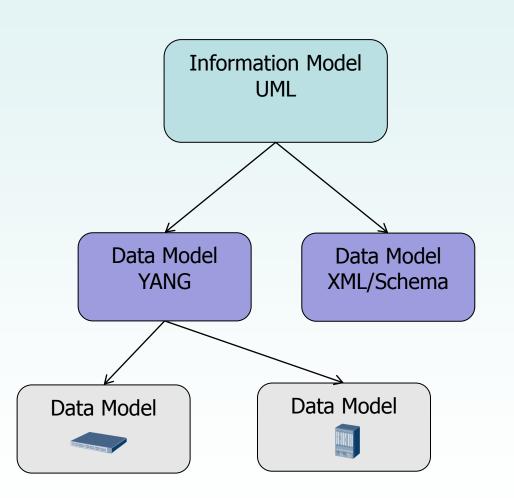
SBI: communications between controller and NEs

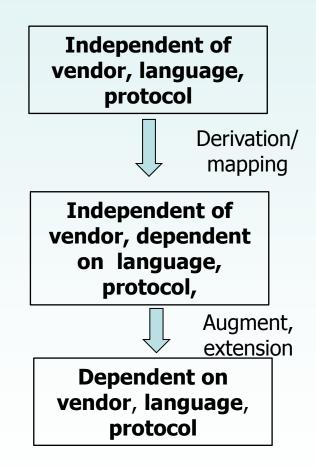

Northbound

- Service level delay requirement
- Flow and service description, service model

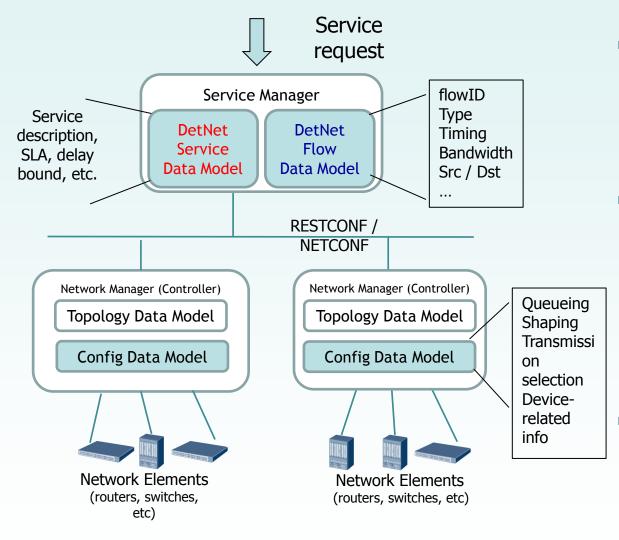
Southbound

- Resource inventory, Topology. (Bandwidth e.g.)
- The data plane information of NEs. (queuing, e.g.)


Peer-to-Peer Reservation Protocol



- Peer-to-Peer Reservation Protocol
 - Good for sensor network, IOT, lightweight comm.
 - "Tell and go": One way reservation, maybe?
 - Easy to be utilized via MPLS
 - RSVP-TE is not feasible
- Depending on the how to describe DetNet flow
 - Flow modeling, (time aware, application aware)


- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM

Modeling of DetNet

Service / Configuration Model

- Service model to deploy service
 - L3VPN
 - DetNet service ?
- Configuration model to config device
 - Config queuing
 - Config shaping
 -
- Flow model
 - Dependent on config model
 - Related to service model

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM

Time Synchronization & OAM

- Time synchronization
 - Time aware shaper is good for LAN and Ethernet
 - Time sync is necessary for multi-hop networking
 - Absolute end-to-end delay bound requires time sync

OAM

- Latency measuring
- Congestion control
- Device failure

Questions?

Questions?