Asynchronous Management Architecture (AMA)

Edward Birrane Edward.Birrane@jhuapl.edu 443-778-7423

Motivation

We cannot deploy challenged internetworks until we can manage them.

- Use cases for DTNs are emerging:
 - Handle signal propagation delay (space and some underwater).
 - Mostly for space and underwater scenarios
 - Handle frequent link disruptions.
 - Mostly for disaster and some vehicular scenarios.
 - Handle frequent link-access disruptions.
 - Mostly for oversubscribed/congested links.
 - Link removed as matter of policy/administration and not physics.
- All preclude human-in-the-loop network management
 - Nodes operate on "far side" of delayed/disrupted links.
 - Disruptions occur from attenuation, tasking, power, and pointing
 - <u>Network management</u> starts looking more like <u>fault management</u>.
 - Maintain ability to relay information from critical assets both on-board and remotely without access to direct operator intervention.

History

- Examined uniqueness of the problem, 2011-2013
 - Some early pubs defining the problem as related to DTN
 - Birrane, E, & Cole, R. (2011). Management of Disruption-Tolerant Networks: A Systems Engineering Approach.
 - E. Birrane, S. Burleigh, V. Cerf, "Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks,"
 - E. Birrane, H. Kruse, "Delay-Tolerant Network Management: The Definition and Exchange of Infrastructure Information in High Delay Environments"
 - Reviewed popular engineering approaches
 - Autonomous fault protection schemes
 - Mobile code and scripting schemes
 - Spacecraft telemetry schedules
 - Deterministic rule-based expert systems
- Delay-Tolerant Network Management Protocol (DTNMP) 2013
 - Published to DTNRG, Initial implementation by NASA
 - Utility outside of NASA network management
- Renamed as Asynchronous Management Protocol (AMP) 2015
 - Submitted as set of IDs to DTNWG.
 - Extracted AMA as set of requirements/properties.

How Do We Manage Networks Today? Do we need a new thing?

Low-latency approaches to network management fail to scale with increasing delays and disruptions.

- Rich set of evolving capabilities
 - Simple Network Management Protocol (SNMP).
 - Pull model of information from managed devices.
 - Support for "traps" to push unreliable notifications of pre-defined events.
 - Network Configuration Protocol (NETCONF).
 - XML-based, **session-based** remote-procedure call (RPC) interface for node configuration.
 - Remote Network Monitoring MIB (RMON).
 - Mechanisms for exchanging network monitoring data.
- Poor scaling with delays, disruptions, or commanding
 - Focus on getting data to operators.
 - Less focus on in-situ response options.
 - Reliance on scripting and mobile code which is not always a deployment option.

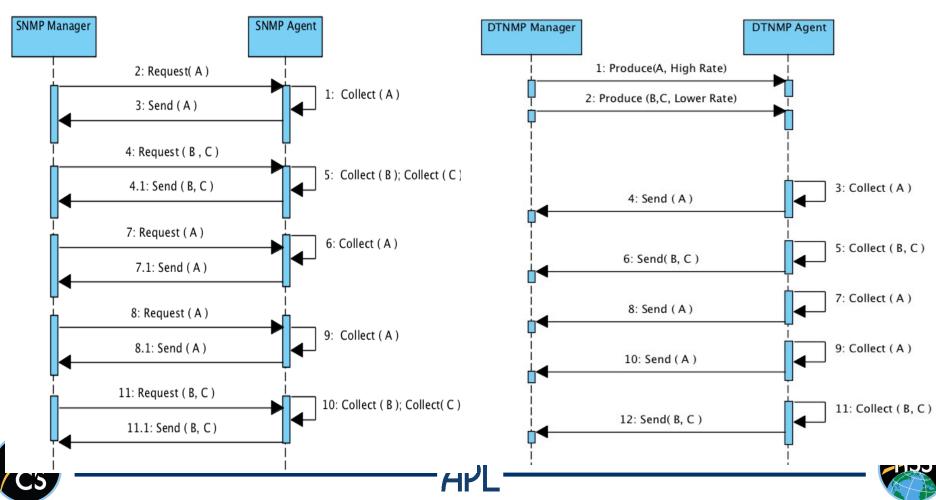
Service Definitions

Performance monitoring (reporting) is one of many network management requirements.

- Parameterized Control
 - Detection, diagnosis, reporting, correcting failures.
 - Example: Monitor-Response Autonomy
- Configuration.
 - Update the behavior of functions within the network remotely.
 - Update/reconfigure systems based on local state and time.
- Administration.
 - Apply access control lists, security settings, and other methods filtering management function by role.
- Reporting
 - Report network conditions to operators and other nodes in an internetwork based on local state and time.

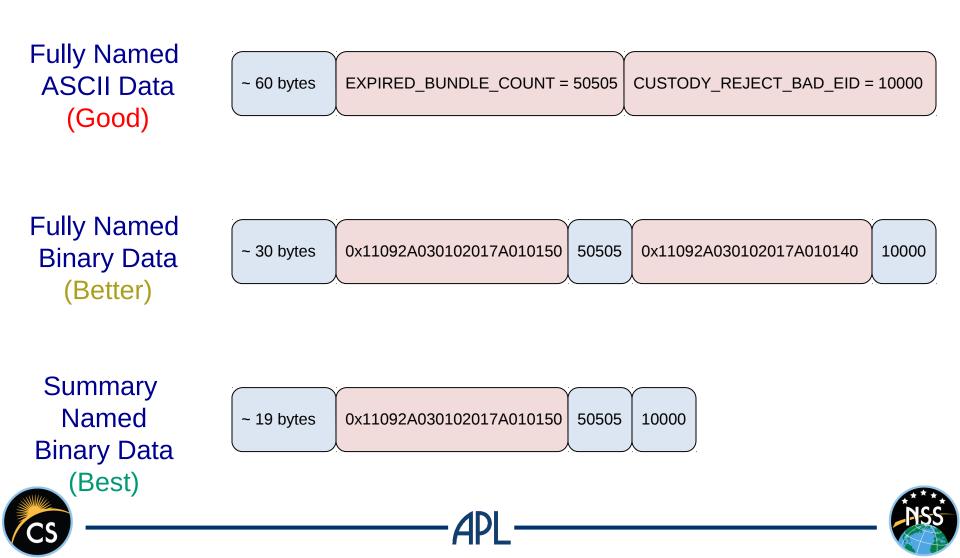
Desirable Properties

- Intelligent Information Push
 - Round-trip pull requests difficult in some deployments
- Minimize Message Size, not Node Processing
 - Smaller messages work for everybody
- Specific Data Identification
 - Do not waste transmissions exchanging synchronizing data. For example, support associative lookups, not table key dumps followed by index queries.
- Tactical Data Definition
 - Define reports with high fidelity.
- Autonomous Operation
 - Deterministic, monitor-response systems
 - Avoid reliance on mobile code which can be problematic

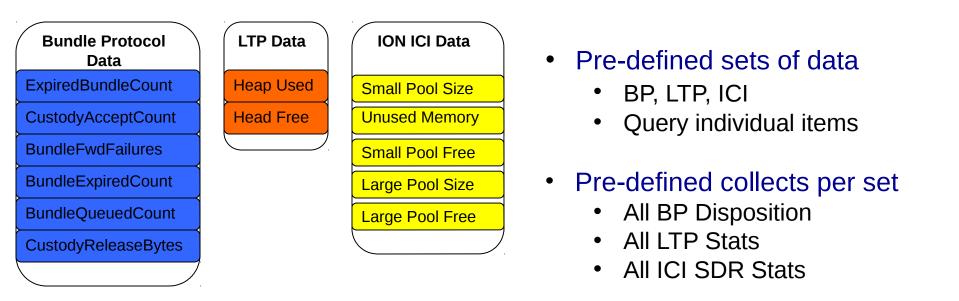


Push, don't Pull.

(extreme) Example: Collect A at high rate, Collect B,C at lower rate.


SNMP (PULL)

AMP (PUSH)



Keep Message Sizes As Small As Practical

Currently recommend pre-shared schemes and binary encoding.

Specific, Tactical Data Definition

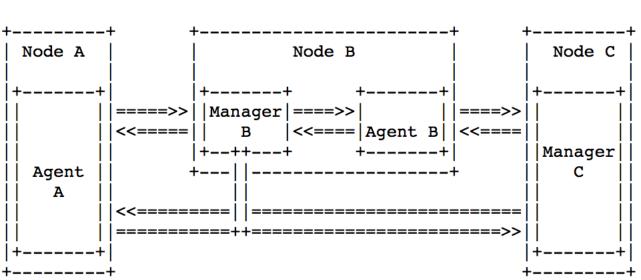
USER DATA	 How to mix/match across data sets?
ExpiredBundleCount	 ExpiredBundleCount + Head Used + Small Pool Size Could make 3 queries (3 sets of NAME=VALUE)
ICI Small Pool Size	 This is wasteful from previous slide) Define new report to represent 3 values
	 1 NAME, 3 VALUES
	 More bandryidth efficient

Application Data Model

ADMs are, notionally, a superset of MIBs. Recommend they be specified in YANG.

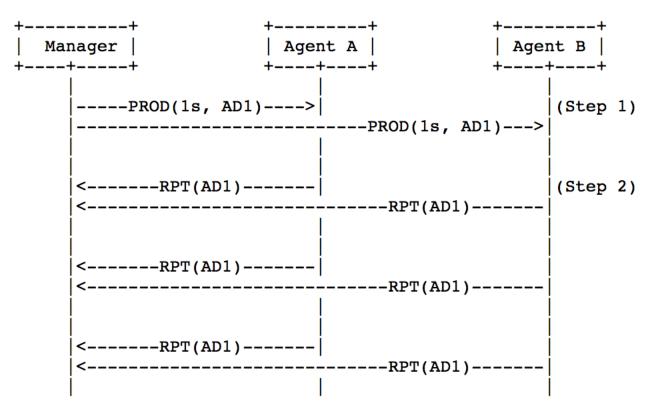
- Atomic Data and Controls.
 - Well-defined data definitions.
 - A = <firmware-sampled value>
 - Well-defined, parameterized command opcodes.
 - SetNewTemperature(float NewTemp, uint Deadline)
- Literals and Operators.
 - Custom constants can be defined per-ADM.
 - PI = 3.14159
 - Special operators (unary, binary, and more) can be defined.
 - *Pow(x,y)*, *Avg(A,B,C,D)*, *etc...*
- Computed Data.
 - Runtime-calculated, typed data: CD = Data OP Data
 - CD1 = A + B; CD2 = pow(A, C1);
- Collections.
 - What pre-defined collections of data values (reports) and control sequences (macros) have been created?

ADM Example


A sample ADM for an application implementing a stack.

"STACK" Application Data Model						
Atomic Controls	Computed Data	Atomic Data				
- PUSH(X) - POP(X)	- Average POPs	- Stack Depth - Total Items - Total # POPs				
Literals	Data Collections	Control Collections				
- MAX_DEPTH = 10	<u>Report 1:</u> - Cur. Stack Depth - Total Items - Average POPs	EMPTY: Stack Depth > 0 POP(X)				

AMA Roles and Responsibilities


AMA Data Flows

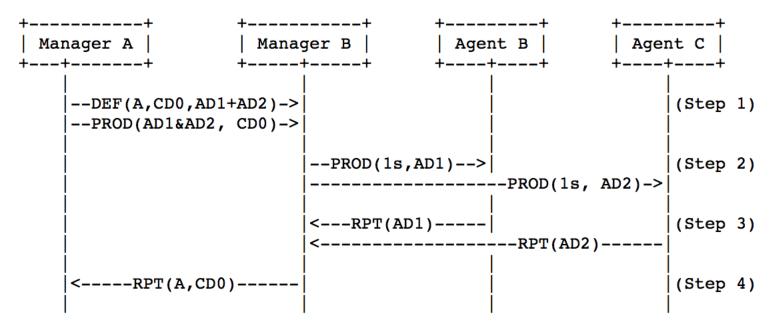
AMA Basic Data Flow

Serialized Management Control Flow

In a simple network, a Manager interacts with multiple Agents.

AMA Multi-Manager Flow

Multiplexed Management Control Flow


+ Manager A ++	Ag	+ ent ++	+ Manag +	ger B
 DEF	'(A,CD1,AD1*2)>	 <def(b, cd2<="" td=""><td>2, AD2*2)-</td><td>(Step 1)</td></def(b,>	2, AD2*2)-	(Step 1)
PR	COD(1s, CD1)>	<prod(1s,< td=""><td>CD2)</td><td>(Step 2)</td></prod(1s,<>	CD2)	(Step 2)
	RPT(CD1)	 RPT(C	CD2)>	(Step 3)
	RPT (CD1)			
		<pre>PROD(1s,</pre>	CD1)	(Step 4)
		ERR(CD1 no	perm.)>	
DEF	'(*,CD3,AD3*3)>			(Step 5)
PF	ROD(1s, CD3)>			(Step 6)
		<prod(1s,< td=""><td>CD3)</td><td></td></prod(1s,<>	CD3)	
	RPT (CD3)		CD3)>	(Step 7)
	RPT (CD3)		2D3)>	
		RPT(C	CD2)>	

AMA Data Fusion Flow

Data Fusion Control Flow

Data fusion occurs amongst Managers in the network.

Current Status

Related internet drafts

Asynchronous Management Protocol (AMP)

- Binary encoding
- Uses any transport layer
- <u>https://tools.ietf.org/html/draft-birrane-dtn-amp-02</u>
- ADMs
 - https://tools.ietf.org/html/draft-birrane-dtn-adm-agent-01
 - https://tools.ietf.org/html/draft-birrane-dtn-adm-bp-00
 - https://tools.ietf.org/html/draft-bsipos-dtn-amp-yang-00
- Reference Implementations (AMP)
 - Reference implementation in ION open source, this summer

Questions?

APL

