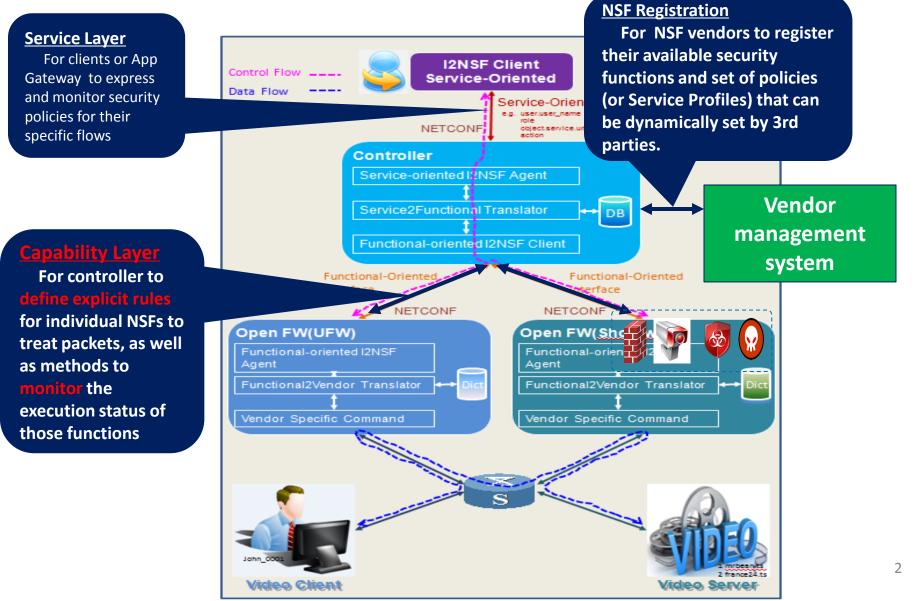
# Information Model of Interface to Network Security Functions Capability Interface


draft-xia-i2nsf-capability-interface-im-05

Liang Xia DaCheng Zhang Edward Lopez Nicolas BOUTHORS Luyuan Fang

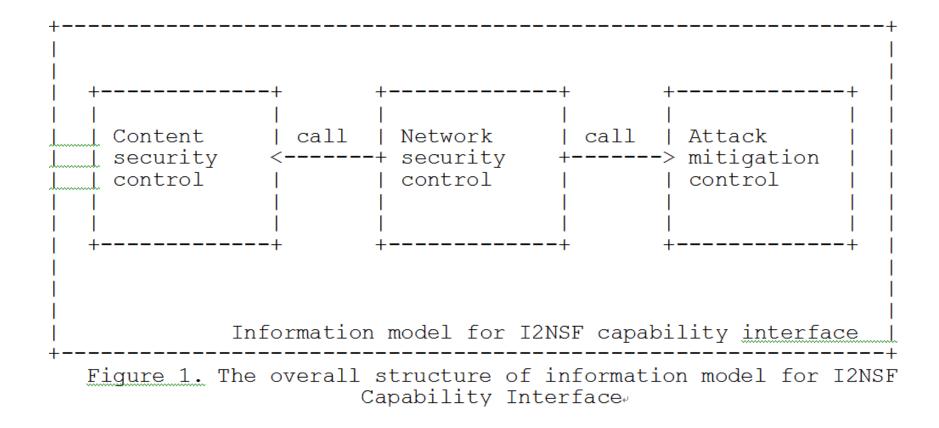
Huawei Alibaba Fortinet Qosmos Microsoft

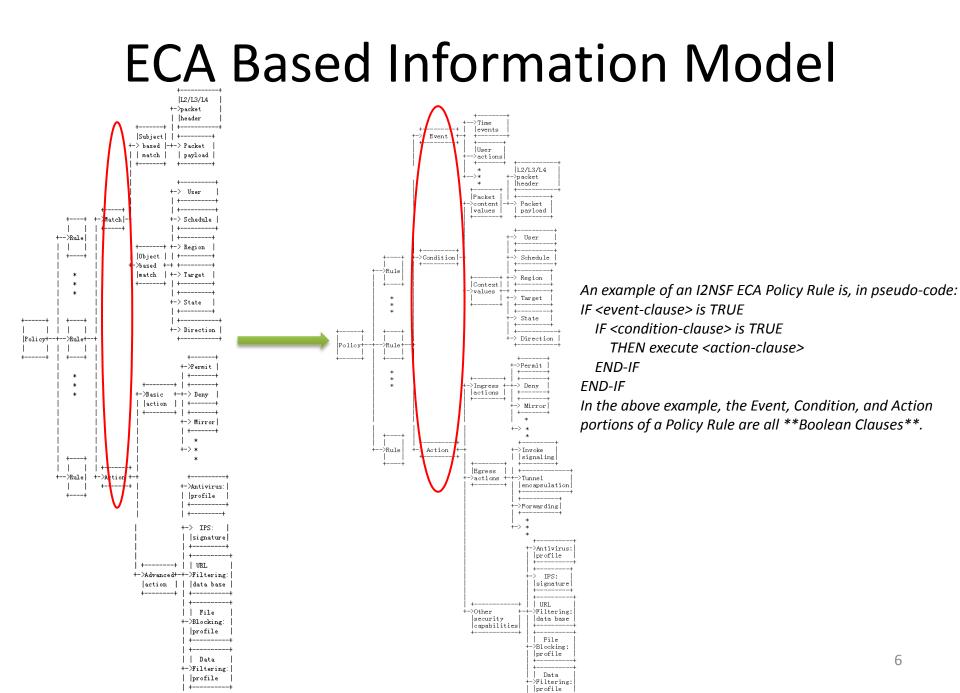
April 2016 Buenos Ayres

#### Monitoring Part of I2NSF Architecture



#### Design Goals


- <u>A standard information model of capability</u> <u>interface for NSF:</u>
  - To realize the security policy provisioning which governs how the packets are treated by the NSF;
  - By building on the packet/flows-based paradigm;
- In order to:
  - Decouple network security controller from vendorspecific NSFs, and vice versa;
  - Abstract general network security capability to be managed flexibly and efficiently;
  - Avoid potential constraints on the NSFs.


#### 3 Categories of Security Capabilities

- 1. Network security control:
  - Inspecting and processing the network packet/flow;
  - Packet contents, context information, actions;
  - Use a "Event-Condition-Action" paradigm;
- 2. Content security control:
  - Detect the malicious contents in application layer : file, url, data block, etc;
  - Security profiles or signature files with standardized input/output parameters;
  - Possibly need the standardized interface for updating its intelligence: signature, and algorithm.
- 3. Attack mitigation control:
  - Detect and mitigate various types of network attacks: DDoS attacks, Single-packet attacks, ipv6 related attack;
  - A standard interface for the security controller to choose and customize the given security capability.

4

# Overall Structure for Information Model for security capability management





## Match Condition Details

| Match Condition             | Attributes: Values                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------|
| Time<br>Event               | TBD                                                                                                    |
| User Actions<br>Event       | login, logout, violate ACL                                                                             |
| Ethernet<br>Frame<br>Header | Source/Destination address<br>s-VID/c-VID/EtherType                                                    |
| IPv4<br>Packet<br>Header    | src/dest address<br>protocol<br>src/dest port<br>length<br>flags<br>ttl                                |
| IPv6<br>Packet<br>Header    | src/dest address<br>protocol/nh<br>src/dest port<br>length<br>traffic class<br>hop limit<br>flow label |
| TCP<br>SCTP<br>DCCP         | Port<br>syn<br>ack<br>fin<br>rst<br>psh<br>urg<br>window<br>sockstress                                 |

| +         |                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------|
| Schedule  | time span<br>days, minutes, seconds,                                                                    |
| Region    | country, province, city<br>IP address, network section,<br>network domain                               |
| Target    | service: TCP, UDP, ICMP, HTTP<br>application: Gmail, QQ, MySQL<br>device: mobile phone, tablet, PC      |
| State     | session state: new, established, related<br>invalid, untracked<br>access mode: WIFI, 802.1x, PPPOE, SSL |
| Direction | Direction: from_client, from_server,<br>bidirection, reversed                                           |

## Information Model for Content Security Control

Anti-Virus Intrusion Prevention URL Filtering File Blocking Data Filtering Application Behavior Control Mail Filtering Packet Capturing File Isolation ... Information model for content security control

## Information Model for Attack Mitigation Control

| <br>  +                            | + ++                  |
|------------------------------------|-----------------------|
| Attack mitigation                  | General Shared        |
| capabilites:                       | Parameters:           |
| SYN flood,                         |                       |
| UDP flood,                         |                       |
| ICMP flood,                        |                       |
| IP fragment flood,                 |                       |
| IPv6 related attacks               |                       |
| HTTP flood,                        |                       |
| HTTPS flood,                       |                       |
| DNS flood,                         |                       |
| DNS amplification,                 |                       |
| SSL DDoS,                          |                       |
| IP sweep,                          |                       |
| Port scanning,<br>  Ping of Death, |                       |
| Oversized ICMP                     |                       |
| Oversized iomi                     |                       |
|                                    |                       |
|                                    |                       |
| +                                  | + ++                  |
|                                    |                       |
|                                    | Information model     |
|                                    | for attack mitigation |
|                                    | control               |

#### Information Model Grammar Details

<Policy> ::= <policy-name> <policy-id> (<Rule> ...)

- <Rule> ::= <rule-name> <rule-id> <Match> <Action>
- <Match> ::= [<subject-based-match>] [<object-based-match>]
- <subject-based-match> ::= [<L234-packet-header> ...] [<packet-payload> ...]
- <L234-packet-header> ::= [<address-scope>] [<layer-2-header>] [<layer-3-header>] [<layer-4-header>]
- <address-scope> ::= <route-type> (<ipv4-route> | <ipv6-route> | <mpls-route> | <mac-route> | <interface-route>)

<route-type> ::= <IPV4> | <IPV6> | <MPLS> | <IEEE\_MAC> | <INTERFACE>

- <ipv4-route> ::= <ip-route-type> (<destination-ipv4-address> | <source-ipv4address> | (<destination-ipv4-address> <source-ipv4-address>))
- <destination-ipv4-address> ::= <ipv4-prefix>
- <source-ipv4-address> ::= <ipv4-prefix>
- <ipv4-prefix> ::= <IPV4\_ADDRESS> <IPV4\_PREFIX\_LENGTH>
- <ipv6-route> ::= <ip-route-type> (<destination-ipv6-address> | <source-ipv6address> | (<destination-ipv6-address> <source-ipv6-address>))
- <destination-ipv6-address> ::= <ipv6-prefix>
- <source-ipv6-address> ::= <ipv6-prefix>
- <ipv6-prefix> ::= <IPV6\_ADDRESS> <IPV6\_PREFIX\_LENGTH>
- <ip-route-type> ::= <SRC> | <DEST> | <DEST\_SRC>
- <layer-3-header> ::= <ipv4-header> | <ipv6-header>
- <ipv4-header> ::= <SOURCE\_IPv4\_ADDRESS> <DESTINATION\_IPv4\_ADDRESS> <PROTOCOL> [<TTL>] [<DSCP>]
- <object-based-match> ::= [<user> ...] [<schedule>] [<region>] [<target>] [<state>]
- <user> ::= (<login-name> <group-name> <parent-group> <password> <expireddate> <allow-multi-account-login> <address-binding>) | <tenant> | <VNid>
- <schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-time> <type> ::= <once> | <periodic>
- <target> ::= [<service>] [<application>] [<device>]

<service> ::= <name> <id> <protocol> [<protocol-num>] [<src-port>] [<dest-port>] <protocol> ::= <TCP> | <UDP> | <ICMP> | <ICMPv6> | <IP> <application> ::= <name> <id> <category> <subcategory> <data-transmission-model> <risk-level> <signature> <category> ::= <business-system> | <Entertainment> | <internet> | <network> | <general> <subcategory> ::= <Finance> | <Email> | <Game> | <media-sharing> | <social-network> | <web-posting> | <proxy> | ... <data-transmission-model> ::= <client-server> | <browser-based> |<networking> | <peer-to-peer> | <unassigned> <risk-level> ::= <Exploitable> | <Productivity-loss> | <Evasive> | <Data-loss> | <Malware-vehicle> |<Bandwidth-consuming> | <Tunneling> <signature> ::= <server-address> <protocol> <dest-port-num> <flow-direction>

<object> <keyword>

<flow-direction> ::= <request> | <response> | <bidirection> <object> ::= <packet> | <flow>

<context based match> ::= [<user-group> ...] [<session-state>] [<schedule>] [<region-group>]

<user-group> ::= <user>...

- <user> ::= (<login-name> <group-name> <parent-group> <password>
  - <expired-date> <allow-multi-account-login> <address-binding>) | <tenant> | <VN-id>

<session-state> ::= <new> | <established> | <related> | <invalid> | <untracked> <schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-time> <type> ::= <once> | <periodic>

<action> ::= <basic-action> [<advanced-action>]

<br/><br/>dvanced-action> ::= <pass> | <deny> | <mirror> | <call-function> | <encapsulation> <advanced-action> ::= [<profile-antivirus>] [<profile-IPS>] [<profile-url-filtering>]

[<profile-file-blocking>] [<profile-data-filtering>] [<profile-application-control>]

10

# Next Step

• Solicit Comments

- More detailed contents, including:
  - content security control IM;
  - attack mitigation control IM;
  - others.
- Call for adoption

# Thanks!

Liang Xia (Frank)