ISO TC204 Use Cases

Thierry Ernst
IETF – ISO liaison officer from ISO TC204

Outline

- Purpose of the IETF ISO liaison
- ISO TC204
- ITS station architecture in brief
- Example use case

Liaison ISO TC204 – IETF: Purpose

- From ISO to IETF: inform about ongoing work developed within ISO TC204
 - In the area of Connected & Cooperative ITS
 - Vehicle / roadside infrastructure / urban infrastructure
 - Use cases include:
 - Public transport
 - Freight & logistics
 - Road safety / Traffic efficiency / Infotainment
- From IETF to ISO
 - Get feedback and advices on the use of IETF protocols in ISO standards (particularly IPv6, Security)

ISO TC204: Intelligent Transport Systems

Started in 1993 ISO/TC 204 Organization Working Groups Lead Country ISO/TC 204 Chairman WG 1 : Architecture United Kingdom WG 3 : ITS Database Technology Japan Secretariat : TIA(USA) Automatic Vehicle Identification/ Automatic Equipment Identification (Telecommunications Norway Industry Association) WG 5 : Electronic Fee Collection Sweden General First Management and Commercial Freight Operation Listoon within ISO/IEC Canada ITU-R SG5 (WP5A) TC 8 WG 8 : Public Transport and Emergency United States TC 22 ITU-R SG6 (WP6A) Integrated Transport Information, Management and Control Australia TC 104 CEN/TC 278 WG 10: Traveller Information Systems United Kingdom TC 154 APEC Route Guidance and Navigation Systems TC 211 IEEE Vacant ISO/IEC/JTC 1 OGC Vehicle/Floodway Warning and Control Systems Japan ISO/IEC/JTC 1/SC 31 UN/CEFACT/TBG 3 WG 15: DeScend Short-Range Communications Vacant TC 122-TC 104 JWG IrDA ETSVERM/TG 37 IEC/TC 9 WG 16: Wide Area Communication United States WCO WG 17: Nomadic Device South Korea WG 18: Cooperative systems Germany

ISO TC204 WG16: CALM

- CALM: Wide Area Communications
- Funded 2001
- Unified communication architecture supporting a variety of access technologies
 - Broadcast & Point-2-Point
 - Adhoc (IP/ non-IP) & permanent connectivity (IPv6)
- Aka "communication toolbox" for other ISO WGs, in particular
 - WG18 Cooperative ITS
 - WG17 Nomadic devices

ISO TC204 WG18: Cooperative ITS (C-ITS)

CEN/TC278/WG16 - ISO/TC204/WG18 Structure 2013

ISO ISO/TC204

WG16 Co-operative Systems

WG18 Cooperative Systems

Joint WG16/WG18

Convenor: Hans-Joachim Schade Rapporteur: András Csepinszky and Eric Wern

and the same and		
SWG1	Harmonization	K. Evensen (NOR)
DT2	Applications management	HJ. Fischer (GER)
DT3	LDM	A. Schalk (AUT)
DT4	Architecture	T. Herb (GER)
DT5	Applications	L. Blaive (FRA)
DT6	Profiles	T. Ernst (FRA)
DT7	Applications	P. Mieybégué (FRA)
E DT8	Message Sets (V2I, I2I)	HJ. Schade (GER)
Liaisons	ETSI TC ITS, SAE	HJ. Schade (GER)
Ext. Interfa	ices ITS-CG, EU-U.S. TF, FOT	HJ. Schade (GER)

Focus on Cooperative ITS services and applications

ITS station architecture: Motivations

- Abstract, open, flexible, future proof ITS station architecture designed to support any type of:
 - Use (road safety, traffic efficiency, infotainment)
 - ITS station (roadside, control center, vehicle, nomadic devices)
 - Transmission (pt-2-pt, broadcast, ...) in IPv6 or non-IP
 - Access technologies (11p, cellular, satellite, 6LoWPAN, ...)
 - Capabilities
 - Communication scenarios (V2X, V2Internet, Roadside2Center, ..)

[ISO 21217]

ITS station architecture: Communications

Vehicle ITS Station (V-ITS-S)

Instantiation example: Hosts, Mobile Router and Gateway

Hybrid communications: Multiple paths

- Multiple communication paths may exist between ITS stations
 - Using distinct access technologies (wifi, cellular, satellite, ...)
 - Using distinct access networks (roadside infrastructure or public)

Without infrastructure support
 Mobile operator

IPv6 in the ITS station: ISO 21217

- Cooperative ITS standards are only referring to IPv6 (not IPv4)
 - Specific ISO TC204 standards specifying the use of IPv6 in an ITS station
 - what IPv6 features are necessary for ITS,
 - how do they map in the ITS station,
 - in which situations is IPv6 used

IPv6 in the ITS station: ISO 21217

- Describe how IPv6 is integrated and operated in the ITS station architecture, basic features required
 - IPv6 addressing auto-configuration, address allocation, DAD, ...
 - IPv6 entities involved (router, host, fixed or mobile) each entity needs different features, depending on scenarios / some are optional
 - IPv6 forwarding and routing neighbor discovery, forwarding table look-up
 - How handovers are performed and sessions
 maintained IPv6 session continuity (NEMO) / IPv6 mobile edge
 multihoming support (MCoA, etc.)

IPv6 in the ITS station: ISO 16789

- Specify extensions of ISO 21210 in order to improve the performance and allow the ITS station to manage hybrid communications
 - Management of multiple IPv6 paths
 - Optimized IPv6 communications between vehicle and roadside ITS stations
 - Direct communication between ITS stations (adhoc)
 - Generically applicable IETF standard is sought on this otherwise ISO will develop its own

Case study: In-Vehicle Signage (IVS)

- Data exchange for the presentation of external road and traffic related data
- Challenges
 - Trust: ensuring the data is coming from authoritative sources
 - Resilience: ensuring the transmission can be performed in all situations (lack of deployment of a given technology, white areas, attacks, ...)

Case study: In-Vehicle Signage (IVS)

• 2 modes:

Broadcast from a roadside ITS station

Point-to-point transmission from a central ITS station to

Hybrid communications: Core standards

- ISO 21217 / EN 302 665: ITS Station Architecture published
- ISO 21210 IPv6 networking published
- ISO 16789 IPv6 networking optimisation work in progress
- ISO 24102.6 Flow and Path Management close to publication
- ISO 17429: Generic ITS stations facilities close to publication
- ISO 17423: ITS application requirements and objectives for selection of communication profiles published
- ISO 17419 Classification & management of ITS applications in a global context published
- New work items recently approved
 - ISO 21196 Guidelines on the use of C-ITS standards for hybrid communications

Thanks for your interest in ISO activities related to ITS

for more information, contact ISO TC204's IETF liaison officer at thierry.ernst@yogoko.fr

Additional information about the ITS station reference architecture (ISO 21217)

ITS station architecture: Motivations

- Abstract, open, flexible, future proof ITS station architecture designed to support any type of:
 - Use (road safety, traffic efficiency, infotainment)
 - ITS station (roadside, control center, vehicle, nomadic devices)
 - Transmission (pt-2-pt, broadcast, ...) in IPv6 or non-IP
 - Access technologies (11p, cellular, satellite, 6LoWPAN, ...)
 - Capabilities
 - Communication scenarios (V2X, V2Internet, Roadside2Center, ..)

[ISO 21217]

ITS station communication architecture

 OSI-like communication architecture adapted to ITS (specified as ISO 21217)

Mapping ITS station – OSI architecture

[ISO 21217]

Multiple access technologies

- WiFi (vehicular, urban)
- Cellular (3G, 4G)
- Satellite, infra-red, MM

Choice of protocols stack

- Internet connectivity
- V2X (adhoc)
- Sensor nodes

- Facilities [ISO 17429]
 - Protocol stack selection mechanism
 - Message exchange mechanism
 - Publication / Subscribe mechanism to share "well known" data objects (C-ITS)
 - Other generic or proprietary mechanisms

- Management of the capabilities of the ITS station
- Management of communication profiles of ITS applications
- Monitoring of local network conditions
- Management of ITS-S applications

ITS Station: Security Entity

- The security entity provides atomic security functions and security material management (keys, certificates, pseudonyms)
- Each layer accesses to the requested security function through an interface (SAP)

- Dangerous goods contextual speed [ISO 17426], in-vehicle signage, [ISO 17425], SPaT/MaP, pedestrian detection, ...
- Public transport / Freight
- Probe data, POI, EV charging, Internet access, infotainment, ...
- Remote diagnostic

=> applications for different purposes, with very different needs

ITS Station Communication Units (ITS-SCU)

ITS station functionalities can be distributed in

several networked components (ITS-S

 Smallest functional element in an ITS station that gets certified

ITS Station: Host

- ITS station host running ITS applications
 - Application Units (AU)
 - Hand-held devices (multimedia applications)
 - Comfort sensors

ITS Station: Router

- ITS station router managing communications
 - Providing access (access routers at the roadside) aka
 RSU
 - Getting access (mobile routers in vehicles) => aka OBU
 - Gateways between networks (border routers)

ITS Station: Gateway

- ITS station gateway between different protocol stacks, e.g.
 - Gateway between IP and CAN / proprietary network
 - Gateway between IP and sensor loop / proprietary network

ITS Stations: Types (examples of instantiations)

Vehicle ITS Station (V-ITS-S)

Instantiation example: Hosts, Mobile Router and Gateway

Roadside ITS Station (R-ITS-S)

 Instantiation example: Hosts, Access Router, Border Router and Gateway

Central ITS Station (C-ITS-S)

 Instantiation example: Hosts, Border Router and Gateway

Personal ITS Station (P-ITS-S)

Combined Host/Router

