
A Remote Key
Implementation

Phillip Hallam-Baker

Use Cases Considered:

• Mine
• Other people’s

Mine

• People are careless with private keys
• Especially on Linux and OSX

• Saved unencrypted to file by default
• Leak through backups, hard drives lost, etc.

• Windows offers obfuscation, binding to TPM
• These get in the way of business processes

• Use Scenarios
• Software signing
• TLS Server
• HSM Interface

CDN Example

• Special case of TLS Server?

• Is the real solution short lived certs (1,3 day) + ACME?

Approach

• LURK is natural compliment to ACME
• Building a toolbox of JSON security services
• JSON should be the default encoding

• Current spec -01 supports JSON-B, JSON-C, TLS, CBOR

• Use fingerprints to identify public keys
• Uniform Data Fingerprint

• Base32 (Version + SHA-x-512 (<content-type> “:” SHA-x-512 (<PKIX-keyinfo>)))

Step 0: Hello Transaction (optional)

• Specify
• LURK protocol version
• Service instances

• Location (URI)
• Protocol bindings (HTTP)
• Instance version(s)
• Encoding options

• JSON, JSON-B, JSON-C, CBOR, TLS-Schema

• Features supported
• Authentication mechanisms

Request

 POST /.well-known/acme/HTTP/1.1

 Host: example.com

 Content-Length: 23

 {

 "HelloRequest": {}}

Response
HTTP/1.1 200 OK

Date: Tue 22 Mar 2016 02:02:33

Content-Length: 403

 {

 "HelloResponse": {

 "Status": 200,

 "StatusDescription": "OK",

 "Version": {

 "Major": 0,

 "Minor": 1,

 "Encodings": [{

 "ID": "application/json"},

 {

 "ID": "application/tls-schema"}]}}}

Step 1: Create (or import) a key pair

• Specify
• Algorithm
• Cryptographic features to support
• Restrictions on operations

• E.g. Only do TLS key exchange, Only TLS/1.2, Only specific TLS/1.2
• Restrictions specified by constrained vocabulary of IANA registered terms

• Allow for advanced crypto
• Co-operative key generation (ECDH, Hallam-Baker/Stradling ‘15)
• Key splitting (RSA, ECDH, TBS)

Step 2: Request a key use

• Require
• Authentication, [Encryption] of request
• Authentication, Encryption of response

• Achieved via
• TLS security (duh)
• JOSE encryption of HTTP payload

• [Different approach to ACME, mine is better]

Step 3: Dispose of Key

• When no longer needed.

Current Status

• Developed and documented specification and implementation
• 3 Elapsed days

• Reference implementation is in C# [Github, MIT License]
• Can be retargeted to C as additional

• Current restrictions
• Only RSA + DH (need CFRG implementations)
• Only JSON (Compiler supports TLSSchema, XML, ASN1, JSON-B, JSON-C)
• Keys deleted when service shuts down
• Missing HTTP payload auth and encryption

	Slide 1
	Use Cases Considered:
	Mine
	CDN Example
	Approach
	Step 0: Hello Transaction (optional)
	Request
	Response
	Step 1: Create (or import) a key pair
	Step 2: Request a key use
	Step 3: Dispose of Key
	Current Status

