An MPTCP Option for Network-Assisted MPTCP Deployments: Plain Transport Mode

draft-boucadair-mptcp-plain-mode-06 IETF 95-Buenos Aires, March 2016

M. Boucadair (Orange)

- C. Jacquenet (Orange)
- D. Behaghel (OneAccess)
- S. Secci (Universite Pierre et Marie Curie)
 - W. Henderickx (ALU/Nokia)
 - R. Skog (Ericsson)
 - O. Bonaventure (Tessares)
 - S. Vinapamula (Juniper)

Outline

- Rationale
- The Plain Mode MPTCP Option
- Where to convey the option
- Handling UDP packets
- Some issues
- Next steps

Network-Assisted MPTCP: Rationale

- Given
 - The MPTCP penetration rate is close to null at the server side, and
 - Network Providers do not control customers' terminals
- A network-assisted model is attractive to offer bonding services

 ASSUMPTION: All access networks are managed by the same Network Provider

How many times did you hear: "MPTCP is not my friend, because ...??

- When you discuss with one of your favorite vendor(s) •
- Each time you read a benchmark about bonding solutions
 - Excerpt from a document released in February 2016 by HGI (link)

Pro	Con			
 Defined (IETF RFC 6824, IETF RFC 6356) Implemented Can be implemented end-to-end avoiding deployment of a new network element (HAG) Works on a per application basis, so can perform dynamic, per application steering. 	 Current implementations do not exploit MPTCP's full potential Simple implementations may not provide significant advantages over regular TCP Policies need to be created and tuned by the Operator. No standard to help. Requires 2 IP addresses Jitter and latency will be greater than that of the highest of the 2 paths 			
	Only works for TCP			

- Some of the above comments are "odd", but the one about UDP is a valid one
- This document proposes an MPTCP extension so that • connections can carry any kind of traffic (UDP, in particular) without requiring any encapsulation scheme 4

• The option is called: Plain Mode (PM)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-----+ | Kind | Length |SubType|D|Flag | Protocol | +-----+ | Address (IPv4 - 4 octets / IPv6 - 16 octets) | +-----+ | Port (2 octets, optional) | +-----+

- D-bit (direction bit): indicates whether the enclosed IP address and/or port number are the original source (D-bit is set) or destination (D-bit is unset) IP address and/or port
- Protocol: Indicates the protocol that is carried in the MPTCP connection, e.g., 6 (TCP), 17 (UDP)
- "Flag": A set of reserved bits for future assignment as additional flag bits
- IPv4/IPv6 Address: Includes a source or destination IPv4/v6 address
- Port: May be used to carry a source or destination port number; valid for protocols that use a 16-bit port number

Outgoing SYN/without source address preservation at the Concentrator

A mapping entry is instantiated			A mapping entry is instantiated			
src: IP@s	dst: IP@d	src: IPcpe@1	PM(D=0; IP@d)	dst: IP@ccf	src: IP@cif	dst: IP@d
	•				1	

 Address preservation is required in IPv6 deployments, in particular

PM(D=1; IP@s)

Does not break applications with address referrals

Outgoing UDP packet/without source address preservation at the Concentrator

Where to Convey the PM Option?

- In SYN segments (RECOMMENDED)
 - The CPE and the Concentrator should maintain a state
 - The option should be included in this order:
 - Dedicated option space, if there is enough room left
 - In the SYN payload, otherwise
- It may be tempting to include the option in all segments (stateless)
 - ...but this design leads to an overhead
 - Some implementers reported that it is complex to integrate in an MPTCP stack

Carrying UDP Traffic

- Dedicated subflows are established to carry UDP traffic
 - These sub-flows can be established prior to the receipt of UDP packets (optimize 3WHS), or
 - Initialized upon receipt of an UDP datagram elected to the bonding service: SYN with data in payload (RECOMMENDED)
- UDP packets are "transformed" into TCP packets by the CPE/Concentrator and which carry the PM Option with the "Protocol" field set to 17
 - UDP header is swapped to a TCP header
- To avoid UDP fragmentation, it is RECOMMENDED to increase the MTU by at least 12 bytes the accommodate the overhead of the UDP/TCP header swapping
- Some TCP features may be disabled by the CPE or Concentrator such as reordering: *deployment-specific*

Carrying UDP Traffic: Some Open Issues

- Issue#1: Include multiple payloads in the same MPTCP message or not?
 - The current version assumes a simple mode with "1:1" header swapping
- Issue#2: Do we need to indicate explicitly the payload boundaries?
- Issue#3: The behavior to follow if swapping UDP/TCP headers leads to fragmentation
 - Not an issue if the MTU is well configured?
 - Declare these packets as not candidate for the bonding service?
 - Fragment the transformed packet and reassemble it before extracting the corresponding UDP packet?
 - Declare it out of scope of the specification?

Some Recommendations & Assumptions

- For IPv4 bonding services, the *default behavior* does not assume address preservation
 - i.e., Only one instance of the PM option will be present
- The solution relies upon IETF BCPs and *recommendations*, especially:
 - RFC4787, RFC5382, RFC6888, and draft-ietf-tsvwg-behaverequirements-update
 - CPE and Concentrator NAT capabilities are not altered
- Whether the CPE/Concentrator preserves DSCP marking or rewrites it is deployment-specific
- The support of features such as MSS clamping is *implementation-specific*

Incoming Connections

- In order to allow for incoming connections, means to instruct the concentrator about how to forward incoming traffic to the appropriate CPE are required
- Compatibility with UPnP IGD is RECOMMENDED
 - SOCKS-based deployments will require an interworking function (which does not exist!)

- Reuse existing code/protocols, e.g.:
 - Port Control Protocol (RFC6887)
 - UPnP IGD/PCP Interworking Function (RFC 6970)

Recap

- No tunnel, no encapsulation
- No out-of-band signaling for each MPTCP subflow
- Carries any protocol (incl. UDP) for the benefit of massive MPTCP adoption
- Accommodates various deployment contexts
- Prototype implementations are underway

What's Next?

- Request mptcp WG adoption
- Comments and contributions are welcome

IETF 95th

Appendix

Why not my favorite protocol: SOCKS, for example

- Too chatty
- UDP bonding is not natively supported
- Need for UPnP IGD-SOCKS interworking

