
 1

Daala Update
IETF 95 (Buenos Aires)

 2

Progress Since Yokohama

● Focusing here on changes that impact
compression performance
– Lots of code clean-up, refactoring, optimization,

tools work, etc. also

● Metrics from AWCY (only recently updated to
follow draft-daede-netvc-testing)

● All metrics on ntt-short-1

 3

Major Things

 4

Full Precision References
(Currently off by default)

● Daala always operates on transform
coefficients in 12-bit precision
– 8-bit inputs are shifted up by 4 before transforms

– Used to shift inverse transform output back to 8 bits
● Saves memory, but adds rounding noise

● FPR: Stop converting back to 8 bits
 RATE (%) DSNR (dB)
 PSNR -1.95527 0.06122
 PSNRHVS -1.64452 0.07952
 SSIM -2.69109 0.06513
 FASTSSIM -1.97242 0.05554

 5

Keyframe Boosting

● We use a finer quantizer for keyframes than
other frames
– Better to code a good predictor than a crappy one

that needs lots of updates

● Originally we were very conservative about this
– Didn’t want “popping” when coding a keyframe

without a scene cut

– Boost was 1 quantizer step (smallest allowed)

 6

Keyframe Boosting Adjustments

● Didn’t update DC quantizers when switching
from 8-point to 4-point lapping
– Caused an implicit keyframe boost

– We corrected it, but was a ~1% regression
● Increased keyframe boost to 2
● Combination of both changes:

 RATE (%) DSNR (dB)
 PSNR -3.02004 0.09553
 PSNRHVS -2.99342 0.14717
 SSIM -2.53231 0.06176
 FASTSSIM -2.44178 0.06971

 7

More Keyframe Boosting

● 2 worked great, so why not 3...

 RATE (%) DSNR (dB)
 PSNR -3.33421 0.10535
 PSNRHVS -2.23736 0.10973
 SSIM -2.95502 0.07231
 FASTSSIM -3.01988 0.08658

These gains are in addition to the prior slide...

 8

More Keyframe Boosting?

● Boost of 3 caused one complaint on Github (thanks!)
● Developers unanimously thought 3 looked better
● Boosting to 4, 5, and even 6 gives more metrics

improvements, but mixed developer opinions
● Really want this to be content-adaptive

– Large boost not helpful with high motion

– But that complicates testing, especially between codecs

 9

B-Frames

● We added B-frames
– MPEG-2 style references

● Don’t use B-frame as references
● Reference buffer management entirely implicit

– One past and one future I/P frame

– No blending mode
● Each OBMC MV points to one reference
● Normal OBMC blending still applies

● These are off by default, because they add latency

 10

B-Frames

● Results using same quantizer as P frames was
a small regression

● Using a coarser quantizer on B frames was a
big improvement

● Results for 2 B-frames between each I/P frame:

 RATE (%) DSNR (dB)
 PSNR -6.85495 0.21126
 PSNRHVS -2.39899 0.10919
 SSIM -6.68393 0.15477
 FASTSSIM -6.88149 0.19032

 11

Better QP Modulation
(Encoder Only)

● Adopted Thor’s approach of using larger QP
changes at lower bitrates
– I frames (and “golden” frames): QP = BaseQP – 2

– P frames: QP = BaseQP*1.05

– B frames: QP = BaseQP*1.1+1

● Improvements over boost of 3:
 RATE (%) DSNR (dB)
 PSNR -1.89545 0.05734
 PSNRHVS -1.70937 0.08181
 SSIM -1.93016 0.04450
 FASTSSIM -2.21168 0.06100

 12

Improve Chroma Quantization

● Used to quantize chroma at a fixed multiple of
the luma quantizer

● Now quantize chroma coarser than luma at
high rates, and finer than luma at low rates

● Big penalty on luma-only metrics, huge gain on
color-aware metric CIEDE2000

 RATE (%) DSNR (dB)
 PSNR 3.65608 -0.11200
 PSNRHVS 3.61704 -0.17133
 SSIM 3.58143 -0.08467
 FASTSSIM 3.41183 -0.09387
CIEDE2000 (subset1):
 -10.7459 0.483104

 13

64x64 Transforms

● Implemented a 64x64 DCT
– Perfectly reversible, multiplier outputs 32 bits

– As mentioned in Yokohama, don’t code high bands

● Requires 64x64 Superblocks
– Small (0.4%) regression

● Overall results of 64x64 SBs plus 64x64 DCT
 RATE (%) DSNR (dB)
 PSNR -1.10946 0.03470
 PSNRHVS -1.52479 0.07414
 SSIM -1.22348 0.02979
 FASTSSIM -1.16836 0.03324

 14

32x32 and 64x64
Activity Masking Tuning

● With the addition of 64x64 transforms, we
needed to tune the activity masking parameters
– We’d never properly tuned 32x32, either

– Metrics are useless for this, but somehow they all
moved in the right direction (even PSNR!)

 RATE (%) DSNR (dB)
 PSNR -0.07591 0.00233
 PSNRHVS -0.30077 0.01439
 SSIM -0.49197 0.01173
 FASTSSIM -1.05095 0.02923

 15

Removed Bilinear Filter

● Filter intended to remove blocking artifacts in
smooth regions after transition to fixed lapping

● Only ever ran on keyframes
● Combination of deringing filter and 64x64

transforms eliminated most of the benefit

 RATE (%) DSNR (dB)
 PSNR -0.13489 0.00406
 PSNRHVS -0.07243 0.00340
 SSIM -0.19117 0.00439
 FASTSSIM -1.39138 0.03806

 16

Deringing Filter Changes (1)

● Signal a filter strength (threshold)
– Signaled once per 64x64 Superblock

– One of 6 levels available (0 == off)

● Harms FastSSIM, but that’s good
– That means the deringing is working

 RATE (%) DSNR (dB)
 PSNR -1.32890 0.04018
 PSNRHVS -0.25398 0.01196
 SSIM -0.68830 0.01581
 FASTSSIM 1.93442 -0.05150

 17

Deringing Filter Changes (2)

● Converted floating point calculations to fixed point
● Changed filter taps to [1,2,3,4,3,2,1]/16 from [2,2,3,2,3,2,2]/16
● Fixed several issues identified by NVIDIA during hardware review

– Made block-level threshold calculation independent of other blocks
● Used to have a term involving an average over the whole superblock

– In the 45-degree case, changed second filter to run horizontally instead
of vertically

● Reduced the number of line buffers required in hardware by two

– Removed divisions in the direction search
● Used to divide by small, fixed constants (1...8) when averaging pixels along each

direction (implemented in practice by multiplies)
● Multiply by the LCM instead: no rounding errors, still fits in 32 bits

● Quality impact of all of these changes was minimal

 18

Fixed-Point PVQ Implementation
(In Progress)

● Large set of incremental changes
● Can switch between fixed and float

implementations at compile time
– To test for regressions

● Currently < 0.1% change in metrics
● Expect to be complete before Berlin

 19

New Coefficient Coder

● Based on splitting PVQ vector in half, coding
sum of absolute values on one side
– Plus special cases when the sum is 1

– Computationally much simpler than prior approach

– Requires more context memory

– Not yet sure what the right trade-off for hardware is
 RATE (%) DSNR (dB)
 PSNR -0.11934 0.00353
 PSNRHVS -0.06492 0.00298
 SSIM -0.36226 0.00815
 FASTSSIM -0.73242 0.01960

 20

Minor Things

 21

Avoid Round-Tripping Skipped
Bands Through PVQ

● Recall in Yokohama that we stopped coding
very large (256+ coefficient) bands

● This was just a simple change to stop running
them through our vector quantizer

 RATE (%) DSNR (dB)
 PSNR 0.09112 -0.00283
 PSNRHVS -0.27288 0.01308
 SSIM 0.36275 -0.00866
 FASTSSIM -0.24695 0.00688

 22

Reorder Skip Flags

● Previously coded a 2 to skip both AC and DC
● Now code a 0

– Entropy coder overhead is minimized when 0 is the
most probable symbol

– If a packet is truncated or the decoder desyncs,
reads past the end of the packet will be skips

 RATE (%) DSNR (dB)
 PSNR -0.03658 0.00113
 PSNRHVS -0.13585 0.00650
 SSIM -0.10983 0.00261
 FASTSSIM -0.25036 0.00694

 23

Flat Initialization of Probabilities for
MV Valid Flags

● Previous MV valid flag probabilities were last
trained when we only had 16x16 MV blocks
– Already used flat probabilities when adding 32x32

– Didn’t change probabilities at all when moving from
4x4...32x32 to 8x8...64x64

● Just flat initialization was now better
 RATE (%) DSNR (dB)
 PSNR -0.07483 0.00230
 PSNRHVS -0.07504 0.00358
 SSIM -0.06616 0.00157
 FASTSSIM -0.05619 0.00155

 24

Don’t Code MV Reference Index
When We Only Have One

● When both available references were the same
(e.g., right after a keyframe), we still coded a
reference index for every MV

● Instead, we now don’t do that
● Makes very little difference

– Thanks, adaptive entropy coding
 RATE (%) DSNR (dB)
 PSNR -0.01599 0.00049
 PSNRHVS -0.01745 0.00083
 SSIM 0.00444 -0.00011
 FASTSSIM -0.03153 0.00087

 25

Simplified Entropy Coder When
Probabilities Sum to a Power of 2

● We support probabilities with arbitrary sum
– No multiplies or divides, some approximation error

● If we can use a multiply, can do powers of 2
with lower overhead

● Currently implemented, but only used for some
low-probability escape values (and headers)

 RATE (%) DSNR (dB)
 PSNR -0.04686 0.00140
 PSNRHVS -0.04323 0.00204
 SSIM -0.06528 0.00148
 FASTSSIM -0.03908 0.00105

 26

Move Where Quantization Matrices
Are Applied

● Previously we scaled coefficients by the
quantizer matrix before PVQ

● Moved to after normalization to a unit vector
– We have higher precision in the normalized domain

– Normalization still takes QM into account

– Small (0.2%) rate reduction for subset1

 RATE (%) DSNR (dB)
 PSNR 0.00592 -0.00020
 PSNRHVS 0.03283 -0.00160
 SSIM -0.06473 0.00156
 FASTSSIM 0.06960 -0.00195

 27

Don’t Apply Lapping Across Edge of
Visible Region

● Video is padded to multiple of 64x64
● Visible region is smaller
● No longer apply lapping across the edge of the

visible region
– This breaks lossless cropping

– Reduces visible edge artifacts

 RATE (%) DSNR (dB)
 PSNR 0.01072 -0.00033
 PSNRHVS 0.00072 -0.00003
 SSIM -0.01913 0.00046
 FASTSSIM 0.04135 -0.00116

 28

Encoder-Only
Improvements

 29

Enable SATD in Motion Search
(Encoder Only)

● Had tried this before, but it didn’t seem to help
– Tested both using 8x8 Walsh-Hadamard Transforms

and a WHT that matches the MC partition size

– All 8x8 was better
● Recall from Yokohama that we dropped 4x4 MC support

● Now it helps:
 RATE (%) DSNR (dB)
 PSNR -0.70911 0.02205
 PSNRHVS -0.75006 0.03614
 SSIM -0.61743 0.01479
 FASTSSIM -0.45986 0.01289

 30

Don’t Code Updates Outside
Viewable Area (Encoder Only)

● Our PVQ implementation doesn’t understand
that some regions are padding

● MC ignores prediction errors in the padding
– PVQ was then coding all of these errors

● After MC, replace the padding in the input
frame by the MC predictor

 RATE (%) DSNR (dB)
 PSNR -1.58367 0.04947
 PSNRHVS -1.69591 0.08251
 SSIM -1.57043 0.03814
 FASTSSIM -1.43134 0.04049

 31

Fixed Overflow in Skip Calculations
(Encoder Only)

● Sometimes cheaper to code a block than skip
● We stored the bitrate difference in an unsigned

variable
● Small metrics change, but fixes some visual

glitches

 RATE (%) DSNR (dB)
 PSNR -0.00898823 0.000430187
 PSNRHVS -0.0266512 0.00174076
 SSIM -0.0236835 0.000961467
 FASTSSIM -0.152803 0.00434009

 32

Better AC/DC RDO (Encoder Only)

● Estimate the rate of coding a skip flag when
skipping all AC coefficients in a block
– Previously we ignored this cost because we were

afraid of greedy decisions

– But counting it seems to help

 RATE (%) DSNR (dB)
 PSNR -0.55807 0.01734
 PSNRHVS -0.57831 0.02785
 SSIM -0.52872 0.01267
 FASTSSIM -1.10557 0.03110

 33

Better Correction for QMs in
Distortion Term (Encoder Only)

● Applying a quantization matrix reduces
measured distortion

● We used to correct with a fixed scale factor
● Now apply one that varies by target quantizer

 RATE (%) DSNR (dB)
 PSNR -0.74377 0.02299
 PSNRHVS -0.54053 0.02597
 SSIM -0.94424 0.02256
 FASTSSIM -0.90805 0.02531

 34

Summary

 35

Summary

● 268 commits
● 4 new contributors
● David Michael Barr, Rostislav Pehlivanov, Luc

Trudeau, Albert Villeneuve-Nguyen
● Aggregate results (with -b 2 --fpr)

 RATE (%) DSNR (dB)
 PSNR -16.88311 0.56128
 PSNRHVS -13.14109 0.67286
 SSIM -17.37209 0.43484
 FASTSSIM -16.01262 0.47097

 36

Daala Progress: FastSSIM
January 2014 to April 2016

Jan

MayJun

Nov

H.265

up and left
is better

HQ YouTube

LQ Video
Conference

Feb
Apr Apr

Nov

 37

Daala Progress: PSNR-HVS
January 2014 to April 2016

Jan

May

Jun

Nov

H.265

up and left
is better

HQ YouTube

LQ Video
Conference

Feb

Apr

Nov

Apr

 38

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

