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Progress Since Yokohama

● Focusing here on changes that impact 
compression performance
– Lots of code clean-up, refactoring, optimization, 

tools work, etc. also

● Metrics from AWCY (only recently updated to 
follow draft-daede-netvc-testing)

● All metrics on ntt-short-1
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Major Things
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Full Precision References
(Currently off by default)

● Daala always operates on transform 
coefficients in 12-bit precision
– 8-bit inputs are shifted up by 4 before transforms

– Used to shift inverse transform output back to 8 bits
● Saves memory, but adds rounding noise

● FPR: Stop converting back to 8 bits
               RATE (%)  DSNR (dB)
        PSNR -1.95527  0.06122
     PSNRHVS -1.64452  0.07952
        SSIM -2.69109  0.06513
    FASTSSIM -1.97242  0.05554
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Keyframe Boosting

● We use a finer quantizer for keyframes than 
other frames
– Better to code a good predictor than a crappy one 

that needs lots of updates

● Originally we were very conservative about this
– Didn’t want “popping” when coding a keyframe 

without a scene cut

– Boost was 1 quantizer step (smallest allowed)
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Keyframe Boosting Adjustments

● Didn’t update DC quantizers when switching 
from 8-point to 4-point lapping
– Caused an implicit keyframe boost

– We corrected it, but was a ~1% regression
● Increased keyframe boost to 2
● Combination of both changes:

               RATE (%)  DSNR (dB)
        PSNR -3.02004  0.09553
     PSNRHVS -2.99342  0.14717
        SSIM -2.53231  0.06176
    FASTSSIM -2.44178  0.06971
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More Keyframe Boosting

● 2 worked great, so why not 3...

               RATE (%)  DSNR (dB)
        PSNR -3.33421  0.10535
     PSNRHVS -2.23736  0.10973
        SSIM -2.95502  0.07231
    FASTSSIM -3.01988  0.08658

These gains are in addition to the prior slide...
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More Keyframe Boosting?

● Boost of 3 caused one complaint on Github (thanks!)
● Developers unanimously thought 3 looked better
● Boosting to 4, 5, and even 6 gives more metrics 

improvements, but mixed developer opinions
● Really want this to be content-adaptive

– Large boost not helpful with high motion

– But that complicates testing, especially between codecs
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B-Frames

● We added B-frames
– MPEG-2 style references

● Don’t use B-frame as references
● Reference buffer management entirely implicit

– One past and one future I/P frame

– No blending mode
● Each OBMC MV points to one reference
● Normal OBMC blending still applies

● These are off by default, because they add latency
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B-Frames

● Results using same quantizer as P frames was 
a small regression

● Using a coarser quantizer on B frames was a 
big improvement

● Results for 2 B-frames between each I/P frame:

               RATE (%)  DSNR (dB)
        PSNR -6.85495  0.21126
     PSNRHVS -2.39899  0.10919
        SSIM -6.68393  0.15477
    FASTSSIM -6.88149  0.19032
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Better QP Modulation
(Encoder Only)

● Adopted Thor’s approach of using larger QP 
changes at lower bitrates
– I frames (and “golden” frames): QP = BaseQP – 2

– P frames: QP = BaseQP*1.05

– B frames: QP = BaseQP*1.1+1

● Improvements over boost of 3:
               RATE (%)  DSNR (dB)
        PSNR -1.89545  0.05734
     PSNRHVS -1.70937  0.08181
        SSIM -1.93016  0.04450
    FASTSSIM -2.21168  0.06100
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Improve Chroma Quantization

● Used to quantize chroma at a fixed multiple of 
the luma quantizer

● Now quantize chroma coarser than luma at 
high rates, and finer than luma at low rates

● Big penalty on luma-only metrics, huge gain on 
color-aware metric CIEDE2000

               RATE (%) DSNR (dB)
        PSNR 3.65608  -0.11200
     PSNRHVS 3.61704  -0.17133
        SSIM 3.58143  -0.08467
    FASTSSIM 3.41183  -0.09387
CIEDE2000 (subset1):
            -10.7459   0.483104
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64x64 Transforms

● Implemented a 64x64 DCT
– Perfectly reversible, multiplier outputs 32 bits

– As mentioned in Yokohama, don’t code high bands

● Requires 64x64 Superblocks
– Small (0.4%) regression

● Overall results of 64x64 SBs plus 64x64 DCT
               RATE (%)  DSNR (dB)
        PSNR -1.10946  0.03470
     PSNRHVS -1.52479  0.07414
        SSIM -1.22348  0.02979
    FASTSSIM -1.16836  0.03324
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32x32 and 64x64
Activity Masking Tuning

● With the addition of 64x64 transforms, we 
needed to tune the activity masking parameters
– We’d never properly tuned 32x32, either

– Metrics are useless for this, but somehow they all 
moved in the right direction (even PSNR!)

               RATE (%)  DSNR (dB)
        PSNR -0.07591  0.00233
     PSNRHVS -0.30077  0.01439
        SSIM -0.49197  0.01173
    FASTSSIM -1.05095  0.02923



 15

Removed Bilinear Filter

● Filter intended to remove blocking artifacts in 
smooth regions after transition to fixed lapping

● Only ever ran on keyframes
● Combination of deringing filter and 64x64 

transforms eliminated most of the benefit

               RATE (%)  DSNR (dB)
        PSNR -0.13489  0.00406
     PSNRHVS -0.07243  0.00340
        SSIM -0.19117  0.00439
    FASTSSIM -1.39138  0.03806
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Deringing Filter Changes (1)

● Signal a filter strength (threshold)
– Signaled once per 64x64 Superblock

– One of 6 levels available (0 == off)

● Harms FastSSIM, but that’s good
– That means the deringing is working

               RATE (%)  DSNR (dB)
        PSNR -1.32890  0.04018
     PSNRHVS -0.25398  0.01196
        SSIM -0.68830  0.01581
    FASTSSIM 1.93442  -0.05150
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Deringing Filter Changes (2)

● Converted floating point calculations to fixed point
● Changed filter taps to [1,2,3,4,3,2,1]/16 from [2,2,3,2,3,2,2]/16
● Fixed several issues identified by NVIDIA during hardware review

– Made block-level threshold calculation independent of other blocks
● Used to have a term involving an average over the whole superblock

– In the 45-degree case, changed second filter to run horizontally instead 
of vertically

● Reduced the number of line buffers required in hardware by two

– Removed divisions in the direction search
● Used to divide by small, fixed constants (1...8) when averaging pixels along each 

direction (implemented in practice by multiplies)
● Multiply by the LCM instead: no rounding errors, still fits in 32 bits

● Quality impact of all of these changes was minimal
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Fixed-Point PVQ Implementation
(In  Progress)

● Large set of incremental changes
● Can switch between fixed and float 

implementations at compile time
– To test for regressions

● Currently < 0.1% change in metrics
● Expect to be complete before Berlin
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New Coefficient Coder

● Based on splitting PVQ vector in half, coding 
sum of absolute values on one side
– Plus special cases when the sum is 1

– Computationally much simpler than prior approach

– Requires more context memory

– Not yet sure what the right trade-off for hardware is
               RATE (%)  DSNR (dB)
        PSNR -0.11934  0.00353
     PSNRHVS -0.06492  0.00298
        SSIM -0.36226  0.00815
    FASTSSIM -0.73242  0.01960
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Minor Things
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Avoid Round-Tripping Skipped 
Bands Through PVQ

● Recall in Yokohama that we stopped coding 
very large (256+ coefficient) bands

● This was just a simple change to stop running 
them through our vector quantizer

               RATE (%)  DSNR (dB)
        PSNR  0.09112  -0.00283
     PSNRHVS -0.27288  0.01308
        SSIM  0.36275  -0.00866
    FASTSSIM -0.24695  0.00688
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Reorder Skip Flags

● Previously coded a 2 to skip both AC and DC
● Now code a 0

– Entropy coder overhead is minimized when 0 is the 
most probable symbol

– If a packet is truncated or the decoder desyncs, 
reads past the end of the packet will be skips

               RATE (%)  DSNR (dB)
        PSNR -0.03658  0.00113
     PSNRHVS -0.13585  0.00650
        SSIM -0.10983  0.00261
    FASTSSIM -0.25036  0.00694
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Flat Initialization of Probabilities for 
MV Valid Flags

● Previous MV valid flag probabilities were last 
trained when we only had 16x16 MV blocks
– Already used flat probabilities when adding 32x32

– Didn’t change probabilities at all when moving from 
4x4...32x32 to 8x8...64x64

● Just flat initialization was now better
               RATE (%)  DSNR (dB)
        PSNR -0.07483  0.00230
     PSNRHVS -0.07504  0.00358
        SSIM -0.06616  0.00157
    FASTSSIM -0.05619  0.00155
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Don’t Code MV Reference Index 
When We Only Have One

● When both available references were the same 
(e.g., right after a keyframe), we still coded a 
reference index for every MV

● Instead, we now don’t do that
● Makes very little difference

– Thanks, adaptive entropy coding
               RATE (%)  DSNR (dB)
        PSNR -0.01599  0.00049
     PSNRHVS -0.01745  0.00083
        SSIM  0.00444 -0.00011
    FASTSSIM -0.03153  0.00087
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Simplified Entropy Coder When 
Probabilities Sum to a Power of 2

● We support probabilities with arbitrary sum
– No multiplies or divides, some approximation error

● If we can use a multiply, can do powers of 2 
with lower overhead

● Currently implemented, but only used for some 
low-probability escape values (and headers)

               RATE (%)  DSNR (dB)
        PSNR -0.04686  0.00140
     PSNRHVS -0.04323  0.00204
        SSIM -0.06528  0.00148
    FASTSSIM -0.03908  0.00105
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Move Where Quantization Matrices 
Are Applied

● Previously we scaled coefficients by the 
quantizer matrix before PVQ

● Moved to after normalization to a unit vector
– We have higher precision in the normalized domain

– Normalization still takes QM into account

– Small (0.2%) rate reduction for subset1

             RATE (%)  DSNR (dB)
        PSNR 0.00592  -0.00020
     PSNRHVS 0.03283  -0.00160
        SSIM -0.06473  0.00156
    FASTSSIM 0.06960  -0.00195
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Don’t Apply Lapping Across Edge of 
Visible Region

● Video is padded to multiple of 64x64
● Visible region is smaller
● No longer apply lapping across the edge of the 

visible region
– This breaks lossless cropping

– Reduces visible edge artifacts

               RATE (%)  DSNR (dB)
        PSNR 0.01072  -0.00033
     PSNRHVS 0.00072  -0.00003
        SSIM -0.01913  0.00046
    FASTSSIM 0.04135  -0.00116
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Encoder-Only 
Improvements
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Enable SATD in Motion Search 
(Encoder Only)

● Had tried this before, but it didn’t seem to help
– Tested both using 8x8 Walsh-Hadamard Transforms 

and a WHT that matches the MC partition size

– All 8x8 was better
● Recall from Yokohama that we dropped 4x4 MC support

● Now it helps:
               RATE (%)  DSNR (dB)
        PSNR -0.70911  0.02205
     PSNRHVS -0.75006  0.03614
        SSIM -0.61743  0.01479
    FASTSSIM -0.45986  0.01289
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Don’t Code Updates Outside 
Viewable Area (Encoder Only)

● Our PVQ implementation doesn’t understand 
that some regions are padding

● MC ignores prediction errors in the padding
– PVQ was then coding all of these errors

● After MC, replace the padding in the input 
frame by the MC predictor

               RATE (%)  DSNR (dB)
        PSNR -1.58367  0.04947
     PSNRHVS -1.69591  0.08251
        SSIM -1.57043  0.03814
    FASTSSIM -1.43134  0.04049
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Fixed Overflow in Skip Calculations 
(Encoder Only)

● Sometimes cheaper to code a block than skip
● We stored the bitrate difference in an unsigned 

variable
● Small metrics change, but fixes some visual 

glitches

              RATE (%)   DSNR (dB)
        PSNR -0.00898823 0.000430187
     PSNRHVS -0.0266512  0.00174076
        SSIM -0.0236835  0.000961467
    FASTSSIM -0.152803   0.00434009
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Better AC/DC RDO (Encoder Only)

● Estimate the rate of coding a skip flag when 
skipping all AC coefficients in a block
– Previously we ignored this cost because we were 

afraid of greedy decisions

– But counting it seems to help

               RATE (%)  DSNR (dB)
        PSNR -0.55807  0.01734
     PSNRHVS -0.57831  0.02785
        SSIM -0.52872  0.01267
    FASTSSIM -1.10557  0.03110
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Better Correction for QMs in 
Distortion Term (Encoder Only)

● Applying a quantization matrix reduces 
measured distortion

● We used to correct with a fixed scale factor
● Now apply one that varies by target quantizer

               RATE (%)  DSNR (dB)
        PSNR -0.74377  0.02299
     PSNRHVS -0.54053  0.02597
        SSIM -0.94424  0.02256
    FASTSSIM -0.90805  0.02531
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Summary
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Summary

● 268 commits
● 4 new contributors
● David Michael Barr, Rostislav Pehlivanov, Luc 

Trudeau, Albert Villeneuve-Nguyen
● Aggregate results (with -b 2 --fpr)

               RATE (%)  DSNR (dB)
        PSNR -16.88311  0.56128
     PSNRHVS -13.14109  0.67286
        SSIM -17.37209  0.43484
    FASTSSIM -16.01262  0.47097
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Daala Progress: FastSSIM
January 2014 to April 2016

Jan

MayJun

Nov

H.265

up and left
is better

HQ YouTube

LQ Video
Conference

Feb
Apr Apr

Nov



 37

Daala Progress: PSNR-HVS
January 2014 to April 2016

Jan

May

Jun

Nov

H.265

up and left
is better

HQ YouTube

LQ Video
Conference

Feb

Apr

Nov

Apr
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Questions?
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