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Introduction

I DNS provides a simple label for hosts, services, applications
on the Internet

I Often, it is misused in malicious activities
I phishing campaigns
I malware
I spam

I For phishing:
1. Compromised domains (majority) - easier
2. Malicious domains (new domains) - more effective?



Introduction

I Newly registered malicious domains have an abnormal initial
DNS lookup [1]

I We see the same on the .nl TLD
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“Popular” new domains

I Why phishing is more popular?
I Assumption: spam-based business model
I Automated
I Maximize profit before being taken down

I Question: can we detect these domains based on DNS
traffic as soon as possible?



Early Detection of Malicious Domains

What we need:
1. “Centralized” data (TLD point-of-view)

I As A TLD registry, we observe a fraction of all .nl TLD traffic
(due to caching)

I Plus, we have registration information

2. High-performance data analytics platform (ENTRADA [2])
I Our open-source solution – http://entrada.sidnlabs.nl
I Allows quick hypothesis test : 53 TB of equivalent pcap

analysis under 3.5 min (4 data node cluster)
I In short: pcap analysis is either too slow or too expensive

3. Efficient algorithm that can be used in production

http://entrada.sidnlabs.nl


DNS and TLD traffic: “centralized” data
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OK, we’ve got the data... now analyze it

I ∼ 85 GB of pcap per day, per auth name server
I You can map/reduce it, but it’s gonna be costly or slow
I CSV, DBRMS have their own limitations

Still it would be very hard to deliver interactive response
times (< few minutes)



OK, so what can we do?

I Build your data streaming warehouse (DSW)
I ENTRADA, ours, is a DSW
I Open-source: http://entrada.sidnlabs.nl
I Analyze 53 TB of pcap data in less than 3.5min in a small

4-data node cluster!
I Used in operation for 2+ years; 100 Billion+ DNS records
I Our case: DNS analysis

http://entrada.sidnlabs.nl


How? Why?

Three main reasons:

1. Efficient file format ( Apache Parquet)

2. Efficient query engine (Cloudera Impala - SQL)

3. Hadoop cluster beneath the hood
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1st: File format - Apache Parquet

I Google Dremel: optimized format for aggregation type queries
I Parquet: based on Dremel (Apache)
I It combines columnar storage

I Fields stored separately

I Partition pruning !
I Compression
I 85 GB DNS pcap→ 6 GB Parquet (some filtering too)



2nd: Query Engine: Cloudera Impala

I SQL support
I no more awk

I Run daemons on each node; parallel queries
I Parquet-file compatible
I Note: there were other options; please refer to paper [2]



3rd: Hadoop Cluster

I Scalability
I HDFS
I Redundancy



Ok, we’ve got the data and the platform. What’s next?
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Figure: nDEWS Architecture [3]

I Work to be presented at AnNET 2016/IEEE NOMS 2016 [3]
I “Bad” domains are likely to be more popular
I k-means clustering algorithm: unsupervised, classifies

according to features
I Run it daily, for all newly added domains on the .nl zone



Feature selection

I Empirically chosen
I

∑
Req : how popular it is

I
∑

IPs: resolver’s diversity
I

∑
CC: countries’ diversity

I
∑

ASes: ASes diversity

I Domains involved in phishing tend to score high on all of them
I Why? spam knows no borders
I We choose two cluster: “normal” and “suspicious”



Evaluation

I 1,5+ years of DNS data on ENTRADA
I 78B DNS request/responses
I All registration database

Key Value
Interval Jan 1st, 2015 to Aug 30th 2015

Average .nl zone size ∼ 5,500,000∑
new domains 586,201

New domains - first timers 476,040(81.2%)
New domains - re-registered 110,161 (18.8%)

Total DNS Requests 32,864,402,270
DNS request new domains (24h) 826,740

DNS request new domains - first-timers (24h) 420,362

Table: Evaluated datasets (from one .nl auth server)



Evaluation

Cluster Size
∑

Req
∑

IPs
∑

CC
∑

ASes
Normal 132,425 4.31 3.06 1.64 1.43
Suspicious 2,956 55.03 27.87 4.99 7.43

Table: Mean values for features and clusters - excluding domains with 1
request - 1st Timers



Validation: historical data

I Were those “suspicious” domains really malicious?
I Very hard to verify on historical data: if they had pages; they

might be gone or diff by now
I Results on historical data:

I Content analysis: 148 “shoes stores” , 17 adult/malware
I 19 phishing domains (out of 49 reported by Netcraft on the

same period)
I VirusTotal: 25 domains matched



Discussion

I Why so many (5–10) new shoes stores per day?
I Probably concocted websites [4]
I Automatically created; spam based



Why shoes?

I Most counterfeit product = ∼ 40% of US Border seizures [5]
I Re-current registration suggest profitability; one site down

does not affect operations
I Online fraud is the NL: 5.3 billion EUR in 2 years; many from

site websites [6]
I Evade industry’s tools/techniques:

I Solutions for phishing and malware exist
I Users left unprotected

I Shoes are a smart play: high demand, and low penalties



Validation on current data

I “Shoes” sites dominate it, depending on the day
I Adult and malware is also detected; we now download

screenshots and content as we classify
I False positives: rapidly popular political websites and others

I work on reducing this now

I Working on making it in near real-time (currently 24h delay)



Summary

1. A DSW delivers the performanced needed for ML on network
traffic

I Ours is open-source: https://entrada.sidnlabs.nl
I Test hypothesis on large datasets within seconds

2. We presented nDEWS
I Early Warning system for new domains
I Uses k-means to classify each domain based on network

traffic features
I It monitors all new domains on the .nl zone, daily
I We notify registrars about it

3. Future work:
I making it near real-time
I incorporate time-series analysis
I evaluate all the domains, and not only the new ones

https://entrada.sidnlabs.nl


Questions?

I Contact:
I http://sidnlabs.nl
I giovane.moura@sidn.nl

I Thank you for your attention

Download our software at: http://entrada.sidnlabs.nl

http://sidnlabs.nl
giovane.moura@sidn.nl
http://entrada.sidnlabs.nl
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