ML in the Routers: Learn from and Act on Network T raffic

Bing Liu @NMLRG, ietf95, April 2016

Contents

- A Router's role in Network Traffic ML — Router-involved Learning — In-router Learning (our focus)
- Perception and Future Plan

Router-involved Learning

- Routers participant in the learning process #1 They act as training data source
 #2 They do the decision/prediction according to the learnt pattern/rules
- But they don't do the training/learning
- Learning is mostly done in a central entity

#1: Router as a Reporter/Sensor

- Only acts as data source for the (central) ML applicati on, reporting:
 - Traffic statistics: interface counter, IPFIX/NetFlow etc.
 - Router status: hardware status, device profiles etc.
 - etc.
- Use Cases:
 - Anti-DDoS (already in commercial use)
 - Network QoS estimation and optimization
 - etc.

#2: Router as a Decision/Prediction Agent

- The training is done in the Data Center/Cloud/SDN Controller/ NMS server etc. (Off-line process)
- The routers apply the learnt rules to the traffic pass through t hem. (*On-line process*)
- Implication
 - One single router has the same Input/Output form as the training data in DC/Cloud/SDN Controller/NMS server etc.
- Use Case:
 - DPI
 - etc.

In-Router Learning

 Routers can learn from the traffic/local data to gain so me knowledge or decision making capability (*predicti* on)

#3 Single router learning

#4 Distributed learning (Ensemble Learning)

- This is our focus
 - Router is the "first hand" entity to handle the traffic
 - Potential *fast-loop* to act on the traffic
 - Routers can sense the raw traffic continuously
 - Raw traffic might contain more potential valuable information co mparing to the extracted statistical/status data reported to the ce ntral node

#3: Single Router Learning

- One router only does its own learning task
 - Both training and prediction is done within the single router
- Only for router-local and lightweight prediction/decision
 - One router can only learn the single point knowledge
 - Restricted computing resource in routers

Use Case #3-1: Dynamic Traffic Alarm Threshold

- One router record traffic data in a per-interface m anner, attributes might contain:
 - Time stamp
 - Input traffic rate
 - Output traffic rate
- After a certain of time , the router learns the data:
 - Anomaly analysis of input/output traffic rate layout on the time period
 - To sort out the normal traffic range in a certain time pe riod

Use Case #3-1: Dynamic Traffic Alarm Threshold

- Set up the threshold parameter for traffic alarm base d on the learnt results
- Dynamically adjust the threshold parameter based on the new data
 - Periodical anomaly analysis
- When interface traffic exceeds the threshold
 - Report the event to the NMS
- Benefit
 - Faster detection than learning at the central repository
 - Abstracted report to the central repository, offload the ov erall burden of the network level learning

Use Case #3-2: Load Balancing

- Traditional scheduling algorithms

 Random, Round Robin etc.
- ML-based scheduling
 - Making real-time test of some KPI as feedback
 - Server's load
 - Response time
 - Connections count

#4: Distributed Learning among Routers

- Distributed learning for the same task
 - Each router learns its own data/passing traffic (Local training)
 - Ensemble all the routers' learning results (Global ensemble)
 - Distribute the ensemble learning result to all routers (Global distribution)
 - One router acts on the traffic independently (Local decision)

Use Case #4-1: Distributed Traffic Anomaly D etection

- Separate the traffic analysis
 - For a core router or edge router, the traffic volume might be massive that it is difficult to do analysis on that router
 - The traffic is naturally separated to the downstream routers
- Anomaly detection on each downstream router – e.g. DDoS traffic detection
- Ensemble the detection result

Use Case #4-2: Dynamic Routing Policy

- Static path in a ring network
 - Always two alternative paths (CW&CCW) to achieve reliability
 - Traditional tech: one direction by default, the other for failove r
- Dynamic path
 - Each router continuously sending probing packets to determin e which direction is better
 - Ensemble each router's result, sort out the proper direction
 - All router in the ring switched to the new direction
 - This could be done periodically

(Pre) Perception

- In-router learning might leverage more on
 - Unsupervised learning
 - No labeled data for supervised learning in the traffic
 - Reinforcement learning
 - Improve the learning task performance based on autonomic real-time network testing/monitoring (Reinforcement learning)
 - More sophisticated autonomic testing technologies are needed
- Single router learning (#3) could be essential even there is central learning
- Distributed learning (#4) has the potential capability for autonomic optimization in a subset of routers (e.g., gro uped by routing domain or path)

Future Plan

- Implementation/test data of the proposed use cases
- Explore Reinforcement Learning
- Router computational capability survey
 - What kind of learning task could be afforded by ro uters
 - Specifically, the resource and time consumption of the proposed use cases

Comments?

Thank you! leo.liubing@huawei.com

IETF95, Buenos Arise