On Firewalls in Network Security

(draft-gont-opsawg-firewalls-analysis)

Fernando Gont Fred Baker

IETF 95 Buenos Aires, Argentina. April 3-8, 2016

Goals of this document

- Recognize role of FWs in internet architecture
- Analyze common kinds of FW and associated claims
- Analyze assumptions made around firewalls
- Analyze trade-offs in different paradigms
- Provide conceptual guidance wrt use and deployment of FWs
- Identify harmful behavior and provide advice
- Trigger other work in this area

But...what do we mean by "firewall"?

- A device or software that imposes a policy whose effect is "a stated type of network traffic may or may not be allowed from A to B".
- May reside in the host or the network
- May be implemented in general-purpose system or in special-purpose middle-ware device.
- May operate at different layers
- The layer at which the firewall operates has implications on the types of policies it may apply

Role of Firewalls in Network Security

- Firewalls provide prophylactic perimeter security
 - analogous to the service provided by the human skin to the human body
- Firewalls do not prevent the need for the stronger solutions
 - they rather make their expensive invocation less needful and more focused.

Firewalls and the E2E Principle

- One common complaint about firewalls is that they violate the E2E Principle.
- However, the E2E Principle:
 - is a plea for simplicity
 - argues against behavior that from the pov of a higher layer introduces inconsistency, complexity, or coupling
 - does **not** forbid e.g. lower layer retransmissions, nor maintenance of state, nor consistent policies imposed for security reasons

Common Kinds of Firewalls

Context or Zone-based firewalls

protect systems within a perimeter from systems outside it

Pervasive routing-based measures

 protect intermingled systems from each other by enforcing role-based policies

IPS systems

 analyze application behavior and trigger on events that are unusual, match a signature, or involve an untrusted peer

Firewalling Strategies

Default-deny

- traffic is blocked unless it is explicitly allowed
- Fails on the "safe side"
- Prevents deployment of new features and applications

Default allow

- traffic is allowed unless explicitly blocked
- typically enforced at perimeters where a comprehensive security policy

Assumptions on addresses & ports

- IP addresses and transport protocol ports are typically assumed to be stable
- IP address stability
 - Assumption changes with IPv6 temporary addresses (RFC4941)
- Transport protocol port numbers
 - More of a short-cut than a design principle
 - Think about DNS SRV records or Portmap
 - Also consider apps such as FTP and SIP

Assumptions on addresses & ports

- Tendency to multiplex apps on usually-allowed ports
 - e.g., tunnel apps on port 80

State Associated with Filtering

Stateless filtering

- Decision solely based on the incoming packet
- Scales well

Stateful filtering

- Decision based on incoming packet and existing (or lack of thereof) state
- Allows for more powerful filtering
- Does not scale well
- Filtering device can become target of DoS attack

Areas where FWs could do better

Enforcing Protocol Syntax at the FW

- Some FWs check that e.g. reserved bits are set to 0
- This prevents incremental deployment on new features and protocol extensions -- e.g., TCP ECN, DNSec

Moving Forward

Adopt as an opsec WG document?