Security and Privacy Implications of Numeric Identifiers Employed in Network Protocols (draft-gont-predictable-numeric-ids)

> Fernando Gont Iván Arce

IETF 95 Buenos Aires, Argentina. April 3-8, 2016

Why talk about this?

- For the last 30 years, many protocol specifications and/or implementations got them wrong.
- Examples:
 - Predictable TCP sequence numbers
 - Predictable transport protocol numbers
 - Predictable IPv4 or IPv6 Fragment Identifiers
 - Predictable IPv6 IIDs
 - Predictable DNS TxIDs
- Lessons learned about numeric identifiers in one protocol were not leveraged/applied in others
- New protocols/specifications specified/built with same flaws

Sample timeline: TCP ISNs

• September 1981:

[RFC0793] suggests the use of a global 32-bit ISN generator.

• February 1985:

[Morris1985] describes exploitation of predictable TCP ISNs.

• April 1989:

[Bellovin1989] discusses security implication of this and other predictable IDs.

• February 1995:

[Shimomura1995] reported a real-world exploitation of the attack described in 1985 (ten years before).

Sample timeline: TCP ISNs (II)

• May 1996:

[RFC1948] was the first IETF effort to mitigate the problem.

• March 2001:

[Zalewski2001] shows statistical weaknesses in some ISN generators.

• May 2001:

Vulnerability advisories [CERT2001] [USCERT2001] are released regarding statistical weaknesses in some ISN generators.

Sample timeline: TCP ISNs (III)

• March 2002:

[Zalewski2002] updates and complements [Zalewski2001]. It concludes that "while some vendors [...] reacted promptly and tested their solutions properly, many still either ignored the issue and never evaluated their implementations, or implemented a flawed solution that apparently was not tested using a known approach".

• February 2012:

[RFC6528], after 27 years of Morris' original work [Morris1985], formally updates [RFC0793] to mitigate predictable TCP ISNs.

• August 2014:

[I-D.eddy-rfc793bis-04], the upcoming revision of the core TCP incorporates [RFC6528] as the recommended algorithm for TCP ISN generation.

Numeric Identifiers

Numeric Identifiers

- A data object in a protocol specification that can be used to uniquely distinguish a protocol object from all others
- They usually have specific interoperability requirements, e.g.:
 - uniqueness
 - monotonically-increasing
 - Stable withing context

Numeric Identifiers (II)

- They have an associated failure severity when requirements are not met:
 - **hard failure**: a non-recoverable condition in which a protocol does not operate in the prescribed manner or it operates with excessive degradation of service
 - **soft failure**: a recoverable condition in which a protocol does not operate in the prescribed manner but normal operation can be resumed automatically in a short period of time.

Root Cause of the Problem

Root cause of the problem

- Protocol specifications which under-specify the requirements for their identifiers
 - TCP port numbers and ISNs in [RFC0793]
 - DNS TxID in [RFC1035]
- Protocol specifications that over-specify their identifiers
 - IPv6 IIDs in [RFC4291]
 - IPv6 Frag ID in [RFC2460]
- Protocol implementations that simply fail to comply with the specified requirements

Categorizing Numeric Identifiers

Analysis of Some Numeric Identifiers

	+	
Identifier	Interoperability Requirements	Failure Severity
IPv6 Frag ID	Uniqueness (for IP address pair)	Soft/Hard
IPv6 IID	Uniqueness (and constant within IPv6	Soft
TCP SEQ	Monotonically-increasing	Hard
TCP eph. port	Uniqueness (for connection ID)	Hard
IPv6 Flow L.	Uniqueness	None
DNS TxID	Uniqueness	None
	r	

Categorizing Numeric Identifiers

++ Cat #	Category	Sample Proto IDs
	Uniqueness (soft failure)	IPv6 Flow L., DNS TxIDs
2	Uniqueness (hard failure)	IPv6 Frag ID, TCP ephemeral port
3	Uniqueness, constant within context (soft failure)	IPv6 IIDs
++ 4 	Uniqueness, monotonically increasing within context (hard failure)	TCP ISN

Some Possible Algorithms

Sample Algorithms

- Our I-D specifies algorithms for each category, that:
 - comply with interoperability requirements
 - minimize the security and privacy implications
- Such that new specifications and/or implementations can use one of those by default, as needed

Advice on Numeric Identifiers

Protocols Specifications Must...

- Clearly specify the interoperability requirements for selecting the aforementioned identifiers.
- Provide a security and privacy analysis of the aforementioned identifiers.
- Recommend an algorithm for generating the aforementioned identifiers that mitigates security and privacy issues.

Moving Forward

Moving Forward

• Where/how we should pursue this?

Questions?